中国农业气象 ›› 2025, Vol. 46 ›› Issue (7): 1050-1062.doi: 10.3969/j.issn.1000-6362.2025.07.013

• 农业气象信息技术栏目 • 上一篇    下一篇

基于深度学习的水稻实景图片发育阶段识别技术

王阳阳,欧小锋,黄晚华,袁钰容,刘帆,庞昕玮,帅子昂,帅细强   

  1. 1.湖南省气象科学研究所/气象防灾减灾湖南省重点实验室,长沙 410118;2.湖南省常德市气象局,常德 415000;3.中国气象干部培训学院湖南分院,长沙 410000;4.湖南省郴州市安仁县气象局,郴州 423600
  • 收稿日期:2024-08-08 出版日期:2025-07-20 发布日期:2025-07-20
  • 作者简介:王阳阳,E-mail:wyy19931993@163.com
  • 基金资助:
    湖南省气象局创新发展重点专项项目(CXFZ2023-ZDZX02);国家重点研发计划项目子课题(2022YFD2300203)

Identification Technology of Rice Development Stages Based on Real Pictures via Deep Learning

WANG Yang-yang, OU Xiao-feng, HUANG Wan-hua, YUAN Yu-rong, LIU Fan, PANG Xin-wei, SHUAI Zi-ang, SHUAI Xi-qiang   

  1. 1. Hunan Institute of Meteorological Sciences/Hunan Key Laboratory of Meteorological Disaster Prevention and Reduction, Changsha 410118, China; 2.Changde Meteorological Bureau of Hunan Province, Changde 415000; 3. China Meteorological Administration Cadre Training Centre Hunan Branch, Changsha 410000; 4. Anren Meteorological Bureau of Chenzhou, Hunan Province, Chenzhou 423600
  • Received:2024-08-08 Online:2025-07-20 Published:2025-07-20

摘要:

基于2023年湖南省怀化市中方县泸阳镇桥上村白天水稻小时尺度的实景照片和人工观测发育期数据,建立水稻移栽期、返青期、分蘖期、拔节期、孕穗期、抽穗期、乳熟期、成熟期发育阶段以及移栽前和收获后共10发育期的实景图片集利用图片切割、数据增强等技术,选取基于深度学习18层残差神经网络(ResNet18)、50层残差神经网络变体(ResNet50_vd)、轻量化卷积神经网络(MobileNetV3_large)、高效轻量级卷积神经网络(PPLCNet)、深度卷积残差神经网络(Xception41)和密集连接卷积网络(DenseNet1216种网络模型对水稻10个发育阶段进行图片识别,分析6种模型在训练集、验证集和测试集的准确率,验证深度学习方法构建的网络模型在水稻发育期智能识别方面的可行性,分析其差异性,以筛选出最优水稻发育期识别模型在业务服务中推广应用。结果表明:6种模型在水稻测试集上的识别准确率保持在92%以上,Xception41模型的准确率最高,达96.19%。测试集水稻移栽前、移栽期、分蘖期、孕穗期、乳熟期和成熟期识别效果最好的模型为Xception41;水稻返青期识别效果最好的模型为ResNet50_vd;水稻拔节期和抽穗期识别效果最好的模型为DenseNet121Xception41;水稻收获后时期识别效果最好模型为ResNet50_vdDenseNet121。研究结果为智能识别水稻发育期提供一种思路,证明深度学习模型在水稻实景图片识别中的可行性,可以满足农业气象业务服务的要求。

关键词: 深度学习, 模型, 准确率, 发育阶段

Abstract:

Based on photos of rice collected hourly during the daytime and manually observed developmental stage data from Qiaoshang village, Luyang town, Zhongfang county, Huaihua city, Hunan province in 2023, a picture dataset containing developmental stages of rice which were seeding period, greening period, tillering period, jointing period, booting period, heading period, grain filling period as well as pre-seeding and the harvested period in a total of 10 periods had been established and processed using cuttingpreprocessing and data enhancement techniques. Six representative deep learning network models, namely 18-layers residual networkResNet18, 50-layers residual network variantResNet50_vd, lightweight convolutional networkMobileNetV3_large, lightweight convolutional networkPPLCNet, deep convolutional residual networkXception41, and densely connected convolutional networkDenseNet121were selected, which were used as pre-training models to recognize the developmental stages of rice based on real pictures, the performances of the six models were compared in the training and test sets to evaluate their accuracy and loss rate to verify the feasibility of the deep learning model for the intelligent recognition of rice developmental stage, analyze its differences, and screen out the optimal rice developmental stage recognition model to promote its application in the business service. The results indicated that all models achieved a recognition accuracy of 92% or higher on the test set, among these models, Xception41 exhibited the highest recognition accuracy of 96.19%. The best model for recognition of pre-seeding, seeding, tillering, booting, grain filling and maturity periods of rice was Xception41, the best model for recognition of greening period of rice was ResNet50_vd, the best models for recognition of jointing and heading periods of rice were DenseNet121 and Xception41, and the best model for recognition of harvested period of rice were ResNet50_vd and DenseNet121 for test set. The study provided a new idea for the intelligent recognition of rice developmental stage, demonstrating the feasibility of deep learning models in recognition of rice live pictures and their potential to meet the demand of agricultural meteorological business services

Key words: Deep learning, Model, Accuracy, Developmental stage