中国农业气象 ›› 2025, Vol. 46 ›› Issue (7): 1063-1076.doi: 10.3969/j.issn.1000-6362.2025.07.014

• 农业气象信息技术栏目 • 上一篇    

ESA-CCI土壤水分数据在中国区域的适用性评估

胡洁,姜志伟,姜涛,王海兵,杨智博   

  1. 1. 内蒙古农业大学沙漠治理学院,呼和浩特 010018;2. 内蒙古工业大学经济管理学院,呼和浩特 010051;3. 内蒙古农业大学旱区水工程生态环境全国重点实验室,呼和浩特 010018;4. 蒙草生态环境(集团)股份有限公司,呼和浩特 010030
  • 收稿日期:2024-10-06 出版日期:2025-07-20 发布日期:2025-07-20
  • 作者简介:胡洁,E-mail:15847754124@163.com
  • 基金资助:
    内蒙古自治区科技计划重点研发项目(2021GG0081);国家自然科学基金地区科学基金项目(42161054)

Evaluation of the Applicability of ESA-CCI Soil Moisture Data in China

HU Jie, JIANG Zhi-wei, JIANG Tao, WANG Hai-bing, YANG Zhi-bo   

  1. 1. College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; 2. School of Economics and Management, Inner Mongolia University of Technology, Hohhot 010051; 3. State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot 010018; 4. Mengcao Ecological Environment (Group) Co., Ltd, Hohhot 010030
  • Received:2024-10-06 Online:2025-07-20 Published:2025-07-20

摘要:

针对ESA−CCI土壤水分数据在中国存在大量缺失值、适用性偏低问题,本研究充分考虑时空数据相关性和结构特征,以K−最近邻(KNN)机器学习算法为核心,构建三维时空数据补缺方法,利用2016−20185−10月中国区域ESA−CCI土壤水分和地面观测数据对比分析数据补缺前后的区域适用性。结果表明:(1)补缺后的ESA−CCI土壤水分数据时空连续性大幅提升,保持了原始数据的时空结构特征,能较好表征中国区域土壤水分时空变化特征,但空间结构和异质性表征优于时间波动性表征。2)数据补缺后的ESA−CCI土壤水分与地面观测的数值统计分布特征基本一致,在中国区域的准确性和一致性总体较好,平均均方根误差(RMSE)、偏差(Bias)、相关系数(r)和结构相似性指数(SSIM)分别为0.068m3·m−30.008m3·m−30.6180.9993)综合数据缺失率和时空评估指标,ESA−CCI土壤水分在黄淮海平原、黄土高原区、东北平原区的区域综合适用性表现最好,其次为云贵高原区、长江中下游区、北方干旱半干旱区,四川盆地及其周边地区和华南区的数据时空覆盖连续性较好,但时空评估指标表现相对较差,青藏高原区数据缺失率严重,综合适用性表现最差。

关键词: ESA?CCI土壤水分, K?最近邻算法, 时空数据补缺, 区域适用性评估

Abstract:

To address the issues of extensive missing values and limited applicability of ESA−CCI soil moisture data in China, a three−dimensional spatio-temporal gap−filling method was developed by incorporating the K−Nearest Neighbor (KNN) machine learning algorithm, with full consideration given to spatio−temporal data correlations and structural characteristics. A comparative analysis of regional applicability was conducted utilizing ESA−CCI soil moisture products and ground observation data collected from May to October during 2016−2018 across China. Three main findings were obtained: (1) significant improvement in spatio−temporal continuity was achieved in the gap−filled ESA−CCI soil moisture data, with the original spatio−temporal structural characteristics being well preserved. The processed data demonstrated enhanced capacity in representing China's soil moisture variation patterns, though spatial structure and heterogeneity characterization outperformed temporal fluctuation representation. (2) Statistical distribution consistency was observed between the gap−filled ESA−CCI data and ground measurements. The filled data exhibited satisfactory accuracy and consistency nationwide, with average performance metrics recorded as follows: root mean square error (RMSE) of 0.068 m3·m3, bias of 0.008 m3·m3, correlation coefficient (r) of 0.618, and structure similarity index measure (SSIM) of 0.999. (3) Regional comprehensive applicability was evaluated through combined analysis of data missing rates and spatio−temporal metrics. Optimal performance was identified in the Huang−Huai−Hai plain, Loess Plateau and Northeast plain regions. Intermediate applicability was observed in the Yunnan−Guizhou plateau, middle−lower Yangtze river basin and Northern Arid/Semi−arid regions. Although improved spatio−temporal coverage continuity was noted in the Sichuan Basin and South China regions, relatively poorer evaluation metrics were obtained. The most severe data limitations and poorest comprehensive applicability were found in the Qinghai−Tibet Plateau region.

Key words:

ESA-CCI soil moisture, K-Nearest neighbor algorithm, Spatio-temporal data gap-filling, Regional applicability assessment