中国农业气象

• 论文 • 上一篇    下一篇

利用协击方法建立广州荔枝寒害预报模型

李楠;叶彩华;廖树华;霍治国;姜会飞;   

  1. 中国农业大学资源与环境学院;山东省气候中心;北京市气候中心;中国气象科学研究院;
  • 出版日期:2008-08-10 发布日期:2008-08-10
  • 基金资助:
    国家科技支撑项目(2006BAD04B03);; 国家科技支撑项目“东北平原中部(吉林)春玉米丰产高效技术集成研究与示范——玉米超高产环境条件研究”(2006BAD02A10)

Developing of Chilling Damage Prediction Model for Litchi in Guangzhou Based on Xieji Method

LI Nan1,4,YE Cai-hua2,LIAO Shu-hua1,HUO Zhi-guo3,JIANG Hui-fei1(1.College of Resource and Environment,China Agricultural University,Beijing 100094,China;2.Climate Center of Beijing,Beijing 100089;3.Chinese Academy of Meteorological Sciences,Beijing 100081;4.Climate Center of Shandong Province,Jinan 250031)   

  • Online:2008-08-10 Published:2008-08-10

摘要: 传统的农业气象长期预报方法在选择预报因子时,往往忽略了因子间的独立性,降低了预报的实际效果。本文尝试应用协击方法对广州荔枝寒害进行长期预报。首先对1962-2005年的致灾因子与前期大气环流指数进行相关分析,初步入选预报因子;然后利用协击方法对入选因子进行独立性检验,并筛选独立性好的因子建立预报方程;最后对预报方程结果进行综合决策。通过对历史数据的回代检验,所建模型的模拟准确率达到86.4%。运用该预报模型对2007-2008年广州荔枝寒害进行试预报,结果与实际相符,表明应用此方法进行农业气象长期预报是有效的。

关键词: 农业气象长期预报, 预报因子, 独立性, 协击

Abstract: The independence of prediction factors is subjected to be ignored when the prediction factors are selected using a traditional long-term agrometeorological prediction method,thus reducing actual prediction effect.The purpose of this paper is to develop a Litchi cold damage prediction model for Guangzhou region using a different method named Xieji.Firstly,based on analyzing correlations between hazard factors and prophase atmospheric circulation factors for a period of 1962-2005,preliminary predictors were selected,then independence of the selected factors were tested by Xieji method,and finally prediction equations using prediction factors with a good independence were established.The model was tested using historical data,and accuracy of model simulation was above 86.4%.The model was then applied to Guangzhou for 2007-2008 to predict Litchi chilling damage.The results of this application were close to real values,and it indicates that this method was valid for a long-term agrometeorological prediction.

Key words: Long-term agrometeorological forecast, Long-term agrometeorological forecast, Predictor, Independence, Xieji