中国农业气象 ›› 2025, Vol. 46 ›› Issue (6): 753-767.doi: 10.3969/j.issn.1000-6362.2025.06.002

• 农业生态环境栏目 • 上一篇    下一篇

升温 1.5℃对中国北方草地土壤有机碳的潜在影响

杨欣悦, 李慧融, 郑浩钧, 蒋文芳, 张稳, 于永强, 王国成   

  1. 1. 北京师范大学地理科学学部,北京 100875;2. 锡林浩特国家气候观象台,锡林浩特 026000;3. 中国科学院大气物理研究 所,北京 100029
  • 收稿日期:2024-07-28 出版日期:2025-06-20 发布日期:2025-06-19
  • 作者简介:杨欣悦,E-mail:202421051116@mail.bnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(42375116;42171293);内蒙古自治区气象局科技创新项目(nmqxkjcx202422)

Potential Impacts of 1.5℃ Warming on Soil Organic Carbon of Grasslands in Northern China

YANG Xin-yue, LI Hui-rong, ZHENG Hao-jun, JIANG Wen-fang, ZHANG Wen, YU Yong-qiang, WANG Guo-cheng   

  1. 1. Beijing Normal University, Beijing 100875, China; 2.Xilinhot National Climatological Observatory, Xilinhot 026000; 3.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
  • Received:2024-07-28 Online:2025-06-20 Published:2025-06-19

摘要:

草地是全球面积最大的陆地生态系统,其碳库约90%以有机碳形式存储在土壤中,且对气候变化敏感。当前,学界鲜有针对变暖条件下草地全剖面(0–100cm)土壤有机碳(Soil organic carbonSOC变化的大尺度、高精度的定量报道。对此,本研究使用数据模型融合的方法,在1km×1km空间分辨率上定量刻画1.5升温情景下中国北方天然草地全剖面SOC的潜在变化特征。结果表明:1.5℃升温情景下研究区全剖面土壤有机碳密度将较升温前平均减少3.63%~4.22%,对应的土壤碳储量损失为0.781.52Pg C1Pg=1015g)。这一估算结果具有较大的不确定性,主要来自于模型输入数据集本身和模型对草地生产力模拟功能缺失。值得注意的是,基于不同土壤数据集对应的估算结果差异很大。其中,基于SoilGrids250m数据集预测的土壤碳库减少量最大(1.52Pg C95%置信区间为1.171.91Pg C),其次是WISE30sec数据集0.82Pg C95%置信区间为0.621.04Pg C)和GSDE数据集0.78Pg C95%置信区间为0.571.04Pg C)。本研究揭示了全球变暖对草地土壤碳储存的潜在负面影响,未来应加强草地生态恢复和保护措施的实施与推广,从而实现草地生态资源的可持续利用与发展。


关键词: 全球变暖, 土壤有机碳, 草地, 模型模拟, 数据–模型融合

Abstract:

Grasslands are the largest terrestrial ecosystem globally, with approximately 90% of their carbon stored as soil organic carbon (SOC), making them highly sensitive to climate change. Despite this, large−scale and high−resolution quantifications of SOC changes across the entire soil profile (0100cm) under warming scenarios remain limited. To address this, this study employed a data−model fusion approach to quantify potential changes in SOC across the entire soil profile of natural grasslands in Northern China under a 1.5℃ warming scenario at a 1km spatial resolution. Results showed that warming could lead to an average decrease of 3.63%–4.22% in SOC density across the soil profile, equivalent to a soil carbon stock loss of 0.78 to 1.52Pg C (1Pg=1015g). However, these estimated carry substantial uncertainty, primarily due to limitations in input datasets and model representation of grassland productivity dynamics. Notably, projections varied significantly among different soil datasets, with SoilGrids250m projecting the largest SOC stock reduction (1.52Pg C, 95% confidence interval: 1.17–1.91Pg C), followed by WISE30sec (0.82Pg C, 95% confidence interval: 0.62–1.04Pg C) and GSDE (0.78Pg C, 95% confidence interval: 0.57–1.04Pg C). These findings underscored the potential negative impacts of global warming on grassland soil carbon storage, emphasizing the necessity of enhancing grassland ecosystem conservation and restoration efforts to ensure the sustainable use and development of these vital ecosystems.


Key words:  Global warming, Soil organic carbon, Grasslands, Model simulation, Data-model fusion