中国农业气象 ›› 2026, Vol. 47 ›› Issue (1): 22-35.doi: 10.3969/j.issn.1000-6362.2026.01.003

• 高标准农田智慧气象监测与应用专刊 • 上一篇    下一篇

基于AHP-模糊综合模型的高标准农田气象保障工程质量评价

崔童,姬兴杰,房勇,纪潇潇   

  1. 1.国家气候中心,北京 100081;2.中国科学院大学应急管理科学与工程学院,北京 100049;3.河南省气象局,郑州 450003;4.中国科学院数学与系统科学研究院,北京 100190;5.北京天译科技有限公司,北京 100081
  • 收稿日期:2024-12-27 出版日期:2026-01-20 发布日期:2026-01-16
  • 作者简介:崔童,E-mail:cuitong@cma.gov.cn
  • 基金资助:
    中国工程院战略研究与咨询项目“农业天气灾害人工干预的战略咨询研究”(2024−XBZD−16);中国工程咨询协会气象专业委员会研究课题“高标准农田气象保障工程效用评价研究”(QZ202516)

Quality Evaluation of Meteorological Support Engineering for High-standard Farmland Based on the AHP and Fuzzy Comprehensive Evaluation Model

CUI Tong, JI Xing-jie, FANG Yong, JI Xiao-xiao   

  1. 1. National Climate Center, Beijing 100081, China; 2. School of Emergency Management Science and Engineering, University of Chinese Academy of Sciences, Beijing 100049; 3. Henan Meteorological Administration, Zhengzhou 450003; 4. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190; 5. Beijing Tianyi Technology Co., Ltd., Beijing 100081
  • Received:2024-12-27 Online:2026-01-20 Published:2026-01-16

摘要:

以高标准农田气象保障工程质量为研究对象,利用德尔菲法识别工程质量影响因素,建立工程质量综合评价指标体系,应用层次分析法求解各指标权重,基于模糊综合评价法构建适用于高标准农田气象保障工程质量的定量化评价模型,评估工程质量的综合及单项指标等级、得分,指出工程建设质量的优势和短板,为工程质量评价、规划和升级提供参考。结果表明:高标准农田气象保障工程质量评价指标涵盖观测站网工程建设质量预报预警系统建设质量信息发布系统建设质量防灾减灾工程建设质量气象保障效益评估5个一级指标、8个二级指标和25个三级指标。5个一级指标的权重排序由高到低依次为观测站网(0.261)>预报预警(0.251)>防灾减灾(0.228)>信息发布(0.154)>效益评估(0.106),其中,观测站网、预报预警和防灾减灾3一级指标的权重占比74%,是工程质量评价的关键性指标。信息发布和效益评估2一级指标权重虽只占26%,但在为农气象服务链条中起前后衔接重要作用;二级指标,同属1级指标下的3对二级指标两两间权重相差较小;三级指标中,灌溉与排水工程质量、灾情预报预警准确率、观测数据及时性指标是权重最高的3以河南省郸城县的某高标准农田气象保障工程为案例,工程质量综合评分为86.3分,属良好等级。其中,5个一级指标均为良好,但各三级指标的评价结果存在差异,在观测站网工程建设、气象信息发布系统、防灾减灾基础设施和能力建设方面效用较好,但预报预警准确率和为农服务满意度等方面存在薄弱点。案例应用结果验证了综合评价模型的有效性和适用性,也为工程质量评价和管理提供了依据。

关键词: 高标准农田, 气象保障工程, 模糊综合评价法, 工程质量, 评价指标

Abstract:

Taking the quality evaluation of meteorological support engineering for High−standard farmland (MSEWFF) as the research object, this thesis utilized the Delphi method to identify determinants of project quality. A comprehensive system of evaluation indices for the quality of the MSEWFF was established, and the Analytic hierarchy process was employed to determine the individual indicator weights. Based on the fuzzy comprehensive evaluation method, a quantifiable model for assessing MSEWFF quality was developed, allowing for the assessment of both overall and individual indicators (including grading and scoring) for targeted projects. It identified strengths and deficiencies in construction quality, thereby providing a reference basis for quality evaluation, planning and enhancement of such engineering projects. The results showed that the project quality evaluation system comprised five first−level indicators−observation station network project, forecast & early warning system, information release system, disaster prevention and mitigation project, and benefit assessment of the meteorological support−which were further divided into eight second−level and 25 third−level indicators. The weight ranking of the five first−level indicators, from highest to lowest, was as follows: observation station network (0.261) > forecast and early warning (0.251)>disaster prevention & mitigation (0.228) > information release (0.154)>benefit assessment (0.106). Notably, the top three higher−weighted primary indicators collectively accounted for 74% of the total weight, indicating their critical role in the project quality evaluation. Although the remaining two first−level indicators (information release and benefit assessment) constituted only 26% of the total weight, they served as important connecting links within the agricultural meteorological service chain. Among the second−level indicators, three pairs of indicators under the same first−level category exhibit nearly comparable weights. For the third−level indicators, irrigation and drainage projects, disaster forecast and warning and timeliness of observational data ranked as the top three highest−weighted indicators. The proposed model was applied to evaluate a case project in Dancheng county, Henan province, yielding a comprehensive quality score of 86.3, which corresponds to a Good rating. Additionally, all five first−level indicators achieved Good ratings, though variations existed among the tertiary indicators. The project demonstrated strong performance in areas such as observation station network construction, meteorological information dissemination systems, and infrastructure and capacity building for disaster prevention and mitigation. However, deficiencies were identified in forecast & early warning accuracy and satisfaction with agricultural meteorological services. The case study validates the effectiveness and applicability of the model and provides a scientific basis for quality assessment and management of such projects.

Key words: High?standard farmland, Meteorological support engineering, Fuzzy comprehensive evaluation method, Engineering quality, Evaluation indices