中国农业气象 ›› 2026, Vol. 47 ›› Issue (2): 191-201.doi: 10.3969/j.issn.1000-6362.2026.02.003

• 高标准农田智慧气象监测与应用专刊 • 上一篇    下一篇

高标准农田冬小麦季土壤水分特征及其对降水事件的响应

申露婷,田宏伟,黄怡陶   

  1. 中国气象局·河南省农业气象保障与应用技术重点开放实验室/河南省气象科学研究所,郑州 450003
  • 收稿日期:2024-12-26 出版日期:2026-02-20 发布日期:2026-02-10
  • 作者简介:申露婷,E-mail:shenlt2024@126.com
  • 基金资助:
    中国气象局高标准农田智慧气象保障技术青年创新团队项目(CMA2024QN03);河南省科技攻关计划(252102320003);中国气象局复盘总结专项项目(FPZJ2025−081);河南省科技研发计划联合基金项目(242103810101);中国气象局农业气象保障与应用技术重点开放实验室开放研究基金项目(AMF202401)

Soil Moisture Characteristic and Response to Precipitation Events in High-standard Farmland during Winter Wheat Season under Different Soil Textures

SHEN Lu-ting, TIAN Hong-wei, HUANG Yi-tao   

  1. China Meteorological Administration·Henan Agrometeorological Support and Applied Technique Key Laboratory/Henan Institute of Meteorological Sciences, Zhengzhou 450003, China
  • Received:2024-12-26 Online:2026-02-20 Published:2026-02-10

摘要:

基于河南省高标准农田37个站点20202023年土壤水分资料、气象资料以及土壤质地数据,分析河南地区冬小麦返青−收获期8个土层(10−100cm)土壤重量含水率、土壤贮水特征,以及不同土壤质地下冬小麦季土壤水分对降水事件的响应,以期为高标准农田水资源科学利用、合理制定调控措施提供参考。结果表明:(12020−2023年河南省高标准农田冬小麦返青−成熟期土壤重量含水率在1060cm土层随土壤深度增加而增加,在1050cm土层随生育阶段的推进而逐渐减少,其中10cm土壤重量含水率减少幅度最大,为3.5个百分点。(22020−2023年河南省高标准农田冬小麦返青−成熟期降水距平百分率为正值时,各层土壤多为贮水增量,降水距平百分率为负值时,各层土壤多为贮水减量。(3)研究期内3种质地的土壤重量含水率呈黏土(17.7%~23.8%)>壤土(16.4%~20.9%)>砂土(10.3%~16.2%),变异系数呈砂土(0.32~0.53)>壤土(0.25~0.38)>黏土(0.22~0.34),砂土的土壤重量含水率波动最大,黏土波动最小,3种质地含水率在10cm深度波动较为剧烈。(43种质地类型土壤重量含水率在垂直方向上对降水事件的响应程度随土层深度的增加而减小,水分可渗透的土层深度随着降水强度的增加而加深。壤土和黏土对降水事件的滞后响应较砂土更明显,暴雨等级下砂壤重量含水率升幅在降水当天达到峰值,第5天基本下降至降水前1d的水平,而壤土和黏土的升幅峰值出现在降水事件第2−5天,7d内无法恢复至降水前水平。整体来说砂土对降水事件响应快但持水时间短,保水能力较差;黏土对降水响应滞后但持水久,保水性能好。

关键词: 高标准农田, 土壤重量含水率, 土壤质地, 降水等级

Abstract:

Based on soil moisture data, meteorological data and soil texture data from 37 high−standard farmland stations in Henan province from 2020 to 2023‌, this study employed regularity analysis to investigate the variation patterns of soil gravimetric water content across 8 soil depth layers (10−100cm), characteristics of soil water storage changes and responses of different soil textures to varying precipitation intensities during the period from regreening to maturity of winter wheat in Henan. The objectives were to provide scientific references for optimizing soil water utilization efficiency and formulating targeted farmland management strategies in high−standard agricultural systems. The results showed that: (1) during regreening to maturity period of winter wheat in Henan high−standard farmland (2020–2023), the soil gravimetric water content of the 10−60cm layer increased with soil depth. In contrast, the 10−50cm layer exhibited a gradual decreased in gravimetric water content as the growth stage progressed, with the 10cm surface layer showing the most significant reduction (a decrease of 3.5pp). (2) During regreening to maturity period of winter wheat from 2020 to 2023 in Henan high−standard farmland, when the precipitation anomaly percentage was positive, soil water storage at various layers predominantly showed an increasing trend. Conversely, a negative precipitation anomaly percentage was associated with a general decrease in soil water storage at various layers. (3) Throughout the study period, the soil gravimetric water content across three soil textures followed the order: clay soil (17.7%–23.8%) > loam (16.4%–20.9%) > sandy soil (10.3%–16.2%). While the coefficient of variation ranked as sandy soil (0.32−0.53) > loam (0.25−0.38) > clay soil (0.22−0.34). Sandy soils exhibited the highest variability in soil gravimetric water content, while clay soils showed the lowest fluctuations. Across all three soil textures, the 10 cm depth layer exhibited the strongest moisture variability. (4) The response of soil gravimetric water content to precipitation events decreased with increasing soil depth across three soil textures, while the penetrable water depth increased with precipitation intensity. Loam and clay soil showed a more pronounced hysteresis effect in moisture response to precipitation compared to sandy soil. Under heavy rainfall conditions, sandy soil gravimetric water content reached peak on the day of precipitation and returned to pre−precipitation levels within 5 days. In contrast, loam and clay soil achieved maximum moisture increments 2 to 5 days after precipitation and failed to recover to pre−precipitation levels within 7 days. Overall, sandy soil responded rapidly to precipitation but retained water for a shorter duration and have poor water retention, whereas clay soil responded more slowly but retain higher moisture for longer periods, demonstrating superior water retention.

Key words: High?standard farmland, Soil gravimetric water content, Soil textures, Precipitation level