中国农业气象 ›› 2020, Vol. 41 ›› Issue (12): 761-773.doi: 10.3969/j.issn.1000-6362.2020.12.002

• 农业生态环境栏目 • 上一篇    下一篇

CLDAS驱动陆面模式模拟中国区域潜热通量的精度评价

王智慧,师春香,沈润平,孙帅,单帅,韩帅   

  1. 1. 南京信息工程大学地理科学学院,南京 210044;2. 国家气象信息中心,北京 100081
  • 收稿日期:2020-07-21 出版日期:2020-12-20 发布日期:2020-12-13
  • 通讯作者: 师春香,E-mail: shicx@cma.gov.cn E-mail:shicx@cma.gov.cn
  • 作者简介:王智慧,E-mail: 13057589810@163.com
  • 基金资助:
    国家重点研发计划(2018YFC1506604;2019YFA0606904);中国气象局“气象资料质量控制及多源数据融合与再分析”

CLDAS Drive Land Surface Model to Simulate Latent Heat Flux in China

WANG Zhi-hui , SHI Chun-xiang , SHEN Run-ping , SUN Shuai, SHAN Shuai, HAN Shuai   

  1. 1. School of Geographic Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China;2. National Meteorological Information Center, Beijing 100081
  • Received:2020-07-21 Online:2020-12-20 Published:2020-12-13

摘要: 利用不同下垫面的通量塔站潜热通量观测数据,计算中国气象局陆面数据同化系统的3个陆面模式(CLDAS-CLM、CLDAS-Noah和CLDAS-Noah-MP)和全球陆面同化系统(GLDAS-Noah)与通量塔站观测资料之间的相关系数(R)、平均偏差(ME)、均方根误差(RMSE)和纳什系数(NSE),进行多时间尺度、多下垫面的精度评价。结果表明:4个模式模拟结果基本能模拟出单峰型的日内变化和年变化趋势以及峰值出现时间,日变化峰值基本出现在14:00,年变化峰值出现在夏季,在分别存在灌溉和土壤冻融现象的农田和湿地处春季数值模拟效果稍差;在小时、日和月尺度上,CLDAS系列模式的模拟效果基本优于GLDAS,从相关系数(R)上看,CLDAS系列的平均值较GLDAS-Noah分别高出0.07、0.08和0.02,从均方根误差(RMSE)上看,CLDAS系列的平均值较GLDAS-Noah,分别减少6.6、5.5和2.3W·m−2。模式模拟效果随着时间尺度和下垫面性质发生变化,月尺度上的模拟效果最好,其中Noah-MP表现较好,其R值为0.88,RMSE为20.8W·m−2,NSE为0.58。4个模式模拟结果在不同下垫面上的表现有一定的共性,在混合林和针叶林存在高估现象,在其余下垫面存在低估现象,但没有一个模型结果在所有下垫面均表现最优,CLM在戈壁、混合林和针叶林站点为最优模型,Noah在荒漠和农田站点为最优模型,Noah-MP在草甸、草原和湿地为最优模型。

关键词: 潜热通量, CLDAS2.0, 陆面模式资料, 精度评价

Abstract: The correlation coefficient (R), the average deviation between (ME), root mean square error (RMSE), and coefficient of Nash (NSE) were calculated between the three land surface model from the land data assimilation system of the China Meteorological Administration (CLDAS CLM, CLDAS Noah and CLDAS-Noah-MP) and global land surface assimilation system (GLDAS-Noah) and the flux tower standing observation data, and the accuracy evaluation in terms of different time scales and the different underlying surface were given. The results show that the diurnal variation and annual variation trends and peak time of the single peak can be simulated according to the simulation results of the four models. The peak of diurnal variation generally occurs at 14:00, the annual variation peak occurs in summer, and the numerical simulation effect is slightly worse in irrigated or freezing-thawing farmland and wetland in spring. On the scale of the hour, day, and month, the simulation of models driven by CLDAS is generally better than that of GLDAS. The mean R-value of simulation by models driven by CLDAS is higher than that of GLDAS-NOAH, which is 0.07, 0.08, and 0.02, respectively. The mean value of RMSE is lower than that of GLDAS -NOAH, and the errors are reduced by 6.6, 5.5, and 2.3W·m−2, respectively. The simulation of the model will change along with the time scale and the underlying surface properties. From the hour to the day to the month scale, the simulation goes through a process of first getting worse and then getting better. The simulation on the month scale is the best, in which Noah-MP performs well, with R value of 0.88, RMSE of 20.8 W·m−2, and NSE of 0.58. Four model simulation results under different performance have the same certain commonality that simulation in mixed forest and coniferous forest were overestimated and that in the rest underlying surface are underestimated. Although no models work well for all underlying surfaces, CLM performs best in stations covered by Gobi, mixed forest, and coniferous forest, Noah performs best in desert and cropland, and Noah-MP performs best in meadow, grassland, and wetland.

Key words: Latent heat flux, CLDAS2.0, Land surface model data, Accuracy evaluation