中国农业气象 ›› 2023, Vol. 44 ›› Issue (08): 707-720.doi: 10.3969/j.issn.1000-6362.2023.08.006

• 农业气象信息技术 栏目 • 上一篇    下一篇

病毒病侵害下番茄叶片SPAD值高光谱估算模型

项倩,杨再强,吴磊,张建建,魏伟   

  1. 1.南京信息工程大学气象灾害预报预警与评估协同创新中心,南京 210044;2.江苏省农业气象重点实验室,南京 210044;3.京博农化科技有限公司,山东滨州 256500
  • 收稿日期:2022-09-26 出版日期:2023-08-20 发布日期:2023-08-14
  • 通讯作者: 杨再强,教授,研究方向为设施农业气象。 E-mail:yzq@nuist.edu.cn
  • 作者简介:项倩,E-mail:2628558147@qq.com
  • 基金资助:
    国家自然科学基金面上项目(41975142);京博农化技术开发委托项目(2020h445)

Hyperspectral Estimation Model for SPAD Value of Tomato Leaf under Virus Disease Infection

XIANG Qian, YANG Zai-qiang, WU Lei, ZHANG Jian-Jian, WEI Wei   

  1. 1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. Jiangsu Key Laboratory of Agrometeorology, Nanjing 210044; 3. Jingbo Agrochemical Technology Corporation, Shandong Province, Binzhou 256500
  • Received:2022-09-26 Online:2023-08-20 Published:2023-08-14

摘要: 以番茄品种‘凯萨’(Kaisa)为试材,于2022年6−8月在南京信息工程大学人工气候室进行盆栽试验。将粉虱作为介体,通过刺吸方式对番茄植株进行病毒传播。设置人工气候箱最高气温/最低气温为28℃/18℃、空气相对湿度为70%(±5个百分点)。利用SOC710光谱仪和SPAD-502叶绿素仪测定番茄苗期叶片不同侵染程度的光谱反射率和叶绿素相对含量(SPAD值),对原始光谱进行一阶导数变换,分析不同侵染程度番茄叶片各高光谱参数和叶绿素相对含量的关系,进而筛选出番茄叶绿素相对含量的敏感波段与特征参数,以期构建叶绿素相对含量的最佳估算模型。结果表明:不同侵染程度下番茄叶片的红边位置不同。在710nm处光谱曲线波峰位置发生左移现象,健康、轻度、中度和重度侵染的番茄叶片最大峰波长分别出现在711nm、700nm、695nm和690nm。通过光谱参数与SPAD值的相关性分析,选出最大极显著相关(P<0.01)的要素R531、R816(正)、R’500和R’721(正)为光谱特征参数。利用光谱特征参数构建光谱指数,与SPAD值呈极显著相关的要素为Dy、λb、λr、Rg、RVI、DVI、PRI、GNDVI、NDVI、mNDI和SAVI。通过逐步回归方法筛选出mNDI、GNDVI、R816、Rg和R’500构建病毒病侵害下番茄叶片SPAD值高光谱估算模型,验证模型的R2为0.835。研究显示,利用光谱技术对病毒病侵害下番茄叶片SPAD值检测是可行的,可为植物病害的早期无损诊断提供参考。

关键词: 番茄, 病毒病害, SPAD值, 高光谱, 估算模型

Abstract: Tomato 'Kaisa' was used as test material for pot trials in the artificial climate chamber of Nanjing University of Information Science and Technology from June to August 2022. Using whiteflies as media, through stinging and sucking for virus transmission to tomato plants. The maximum/ minimum air temperature was set at 28℃/18℃ and the relative air humidity at 70% (±5 percentage points) in the artificial climate chamber. The spectral reflectance and relative chlorophyll content (SPAD value) of tomato seedling leaves at different levels of the infection were measured by the SOC710 spectrometer and the SPAD-502 chlorophyll meter. The original spectra was first-order derivative transformed to analyze the relationship between each of the hyperspectral parameters and SPAD value of tomato leaves at different infection levels. In turn, the sensitive bands and characteristic parameters of tomato were screened in order to construct the best model for the estimation of the SPAD value. The results show that different infection levels of tomato leaves had different positions of the red edges. The leftward shift in the position of the spectral curve peak occurred at 710nm, with the maximum peak wavelengths occurring at 711nm, 700 nm, 695 nm, and 690 nm for healthy, slight, moderate, and severe infested tomato leaves, respectively. The elements R531, R816 (positive), R'500, and R'721 (positive) with the maximum highly significant correlation (P<0.01) were selected as spectral feature parameters by correlation analysis of spectral parameters with SPAD value. Spectral indexes were constructed using spectral feature parameters and the elements that were highly significantly correlated with SPAD values were Dy, λb, λr, Rg, RVI, DVI, PRI, GNDVI, NDVI, mNDI and SAVI. The hyperspectral estimation model of SPAD value of tomato leaves under virus disease infection was constructed by screening mNDI, GNDVI, R816, Rg, and R'500 by stepwise regression method, and the R2 of the validated model was 0.835. This study showed that the use of spectral technology was feasible for the measurement of SPAD value in tomato leaves affected by virus diseases, which provided a reference for early non-destructive diagnosis of plant diseases.

Key words: Tomato, Virus disease, SPAD value, Hyperspectral, Estimation model