中国农业气象 ›› 2025, Vol. 46 ›› Issue (4): 512-523.doi: 10.3969/j.issn.1000-6362.2025.04.007

• 农业生物气象栏目 • 上一篇    下一篇

基于气象条件的贵州稻纵卷叶螟田间种群发生量模型

孙思思,杨诗俊,王可心,唐辟如,曾晓珊,于飞   

  1. 1.贵州省山地气象科学研究所,贵阳 550081;2.广西壮族自治区气象台,南宁 530022;3.气象灾害预报预警与评估协同创新中心/南京信息工程大学,南京 210044;4.贵州省生态与农业气象中心,贵阳 550002
  • 收稿日期:2024-07-16 出版日期:2025-04-20 发布日期:2025-04-14
  • 作者简介:孙思思,高级工程师,从事农业气象研究,E-mail:sunsisi3s@foxmail.com;杨诗俊,工程师,从事农业气象研究,E-mail:y_s_j_1234@163.com
  • 基金资助:
    贵州省科学技术基金基础研究项目(黔科合基础-ZK[2021]一般210);贵州省气象局创新团队项目(黔气科合TD[2024]06号);江苏省研究生科研与实践创新计划项目(KYCX24_1447)

Model of Field Population Abundance of Rice Leaffolder in Guizhou Province Based on Meteorological Conditions

SUN Si-si, YANG Shi-jun, WANG Ke-xin, TANG Pi-ru, ZENG Xiao-shan, YU Fei   

  1. 1. Guizhou Mountainous Meteorological Science Research Institute, Guiyang 550081, China; 2. Guangxi Meteorological Observatory, Nanning 530022; 3. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044; 4. Guizhou Ecological Meteorology and Agrometeorology Center, Guiyang 550002
  • Received:2024-07-16 Online:2025-04-20 Published:2025-04-14

摘要:

以贵州省余庆县为研究区,基于2011−2020年稻纵卷叶螟主要发生期(6−8月)大田调查数据和气象数据,采用相关分析、数理统计和机器学习方法,分析气象条件对贵州稻纵卷叶螟田间幼虫和成虫种群发生量的影响,筛选关键气象因子,探究不同建模方法对贵州稻纵卷叶螟田间幼虫和成虫种群发生量的模拟结果。结果表明:(1)有利于稻纵卷叶螟幼虫量增加的气象因子为平均最低气温、降水量、平均空气相对湿度和最小空气相对湿度;有利于稻纵卷叶螟成虫量增加的气象因子为平均气温、最低气温、降水量、平均空气相对湿度、最小空气相对湿度、日照时数以及0cm平均地温。(2)气象条件对贵州稻纵卷叶螟田间种群滞后影响较大,影响稻纵卷叶螟田间种群发生量的主要气象因子为6−8月候平均气温、平均最低气温、降水量、最小空气相对湿度、平均风速和0cm平均地温,影响滞后效应最长可达30d,显著影响时段为前345候。(3)不同建模方法的模型模拟结果差异较大,非线性模型模拟效果(R2=1.00MAE=2.62头,RMSE=3.89头)高于线性建模(R2=0.46MAE=164.98头,RMSE=240.66头),对成虫量的模拟效果(R2=0.68MAE=81.29头,RMSE=117.98头)高于对幼虫量的模拟效果(R2=0.67MAE=118.78头,RMSE=173.92头)。

关键词: 稻纵卷叶螟, 气象条件, 田间种群发生量, 机器学习, 余庆县

Abstract:

Taking Yuqing county of Guizhou province as the study area, data from the rice leaffolder (RLF) field surveys and meteorological stations during the main local RLF occurrence period (June-August) from 2011 to 2020 and methods such as correlation analysis, mathematical statistics, and machine learning were used to analyze the effects of meteorological conditions on the population abundance of larvae and adults of RLF in Guizhou province, screen for key meteorological influence factors, and explored the predictive effects of different modeling methods. The results showed that: (1) meteorological factors that favored the increase in RLF larvae were mean minimum temperature, precipitation, mean relative humidity, and minimum relative humidity. Mean temperature, minimum temperature, mean precipitation, mean relative humidity, mean minimum relative humidity, sunshine hours, and mean 0cm ground temperature were found to favor an increase in RLF adults. (2) The lagged effect of meteorological conditions on RLF’s field populations in Guizhou province was greater. The RLF field population abundance was mainly influenced by mean temperature, mean minimum temperature, precipitation, minimum relative humidity, mean wind speed, and mean 0cm ground temperature, which were per-five-day daily averaged between June to August each year. The longest lag effect could be up to about 30d, with significant effect period of 3, 4, and 5 pentads in advance. (3) The results of the model simulation varied considerably between the different modeling schemes. Non-linear models (R2=1.00, MAE=2.62 individual, RMSE=3.89 individual) were more effective than linear models (R2=0.46, MAE=164.98 individual, RMSE=240.66 individual), and the simulation effect for the adult population (R2=0.68, MAE=81.29 individual, RMSE=117.98 individual) was better than that for the larva population (R2=0.67, MAE=118.78 individual, RMSE=173.92 individual).

Key words: Rice leaffolder(RLF), Meteorological condition, Field population abundance, Machine learning, Yuqing county