中国农业气象 ›› 2025, Vol. 46 ›› Issue (10): 1414-1424.doi: 10.3969/j.issn.1000-6362.2025.10.004

• 农业生态环境栏目 • 上一篇    下一篇

下垫面差异对北京夏季一次对流性降水的影响

王媛媛,张亦洲,韩锐,杨扬,郭晓染,邱雨露   

  1. 1.首都关键区域气象服务保障中心,北京 100089;2.北京城市气象研究院,北京 100089;3.中国农业科学院农业环境与可持续发展研究所,北京 100081;4.高原与盆地暴雨旱涝灾害四川省重点实验室,成都 610072;5.北京市气象台,北京 100089
  • 收稿日期:2024-11-21 出版日期:2025-10-20 发布日期:2025-10-16
  • 作者简介:王媛媛,E-mail:wyy19890103@163.com
  • 基金资助:
    北京市气象局首都关键区域精准预报服务能力提升青年创新团队项目;国家自然科学基金气象联合基金项目(U2342221);中央级公益性科研院所基本科研业务费专项(BSRF202226);高原与盆地暴雨旱涝灾害四川省重点实验室开放研究基金项目(SZKT202302)

Impact of Underlying Surface Difference on Convective Precipitation over Beijing in Summer

WANG Yuan-yuan, ZHANG Yi-zhou, HAN Rui, YANG Yang, GUO Xiao-ran, QIU Yu-lu   

  1. 1. Meteorological Service Center for the Core Areas of the Capital, Beijing 100089, China; 2. Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089; 3. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081; 4. Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072; 5.Beijing Weather Forecast Center, Beijing 100089
  • Received:2024-11-21 Online:2025-10-20 Published:2025-10-16

摘要:

利用睿图−城市预报系统,结合北京地区自动站观测数据,对2021816日北京对流性降水过程进行数值模拟和敏感性分析,探讨下垫面差异对夏季对流性降水热力和动力过程的影响,以期提高对对流性降水过程的预报能力。结果表明:(1)睿图城市预报系统可较好模拟北京2021816日强降水过程的时空特征,强降水落区位于城区西部,162200前后为主要降水时段。强降水过程发生前期城市热岛效应明显,城区西部地区是明显暖中心,气温较郊区高1.02.0℃;若城市下垫面替换为农田下垫面,城市热岛强度减弱至1℃以下,对流强度减弱,降水量极值由117.1mm降至56.6mm,北京城区西部暴雨区消失,表明城市下垫面对本次对流性降水过程影响较大。(2)城市下垫面上空的感热通量强于农田下垫面,最大差值可达100W·m2,通过补偿作用,引起低层大气辐合,易于不稳定能量释放,大气低层(600m)扰动位温增强,正中心可达1.0℃,降低大气静力稳定度,为对流发生提供了更有利的不稳定层结。(3)城市下垫面地表粗糙度较大,辐合上升运动和水汽垂直输送在城市迎风侧(海淀、石景山等西部地区)增强,辐合中心强度可达30×104·s1,雨水混合比显著高值中心超过3g·kg1,低层水汽和能量得以向上输送,更利于对流性降水天气的发生,增强了降水。

关键词: 城市下垫面, 农田下垫面, 对流性降水, 热岛效应, 地表粗糙度

Abstract:

In order to study the impact of the underlying surface on convective precipitation in Beijing and improve the convective precipitation prediction ability, simulations from RMAPSUrban model and observations from the Beijing station were used to study a specific case that occurred on August 16, 2021. The simulation results showed that the RMAPSUrban model was able to well model the temporal and spatial distribution of precipitation, with the heavy precipitation area located in the western part of the city and the main precipitation period occurring around 22:00 on 16th. In the early period of heavy precipitation, the urban heat island (UHI) was obvious in the urban area of Beijing, with UHI arriving 1.02.0℃. When the urban underlying surface was replaced by crop, the UHI was weakened below 1.0℃, the extreme precipitation decreased from 117.1mm to 56.6mm, and the rainstorm area in the western part of the urban area disappeared. Those indicated that the occurrence and development of convective precipitation was closely related to the urban underlying surface. Moreover, the sensible heat flux over the urban underlying surface was significantly higher than that over the surrounding regions, up to 100W·m2, which enhanced the convergence over the urban areas and provided the uplift for the formation of the convection. In addition, the perturbations in the potential temperature of the lower atmosphere (below 600m) were also enhanced by the urban underlying surfaces, offering unstable stratification conditions. Finally, larger roughness over the urban underlying surface caused more precipitation in the windward side of the city of the low level surface for the lower water vapor and energy can be transported up with the intensity of the convergence reaching 30×104·s1 and the rainwater mixing ratio exceeding 3g·kg1, which was more favorable for the occurrence of convective precipitation. 

Key words: Urban underlying surface, Crop underlying surface, Convective precipitation, Urban heat island, Surface roughness