中国农业气象 ›› 2025, Vol. 46 ›› Issue (10): 1487-1502.doi: 10.3969/j.issn.1000-6362.2025.10.010

• 农业生物气象栏目 • 上一篇    下一篇

基于PCA−Informer算法的设施栽培三七温湿度预测和预警系统

李娜,张舒凌,张文韬,杨启良,梁嘉平,刘小刚,杜天牧   

  1. 昆明理工大学现代农业工程学院/云南省农业水资源高效利用与智慧管控重点实验室,昆明 650504
  • 收稿日期:2025-02-12 出版日期:2025-10-20 发布日期:2025-10-16
  • 作者简介:李娜,E-mail:lina_nafu1221@163.com
  • 基金资助:
    国家自然科学基金项目(52409059;52379041);云南省基础研究专项重点项目(202201AS070034);云南省基础研究计划项目(202201BE070001−020);云南省农业水资源高效利用与智慧管控重点实验室(202449CE340014);云南省智能农业工程技术与装备国际联合实验室(202403AP140007);季节性旱区水−土−作物系统云南省野外科学观测研究站(202305AM070006)

Temperature and Humidity Prediction and Warning System for Facility Cultivation of Panax notoginseng Based on PCA−Informer Algorithm

LI Na, ZHANG Shu-ling, ZHANG Wen-tao, YANG Qi-liang, LIANG Jia-ping, LIU Xiao-gang, DU Tian-mu   

  1. Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology/Key Laboratory of Efficient Utilization and Intelligent Management of Agricultural Water Resources in Yunnan Province, Kunming 650504, China
  • Received:2025-02-12 Online:2025-10-20 Published:2025-10-16

摘要:

三七具有极高的药用和经济价值,喜温喜湿,温湿度是影响其生长的重要环境参数。目前,三七设施栽培以人工经验为主,设施环境调控存在严重滞后性,导致三七易受病虫害影响造成减产,严重阻碍产业发展。本研究利用卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆神经网络(LSTM)和Informer模型四种深度机器学习算法初步优选设施三七温湿度预测模型,构建改进的PCA−Informer模型以提高模型训练效率和性能。同时,通过环境监测传感器实现数据采集,将PCA−Informer模型嵌入平台软件,采用Django框架结合Python技术实现平台主要功能模块,开发三七设施栽培环境监测、温湿度预测和预警平台。结果表明:1)Informer模型相较于其他三种深度机器学习算法预测精度最高,空气温度和湿度的平均绝对误差(MAE)分别0.860℃和3.870个百分点,决定系数(R2)分别0.959和0.964。2)通过Informer模型的Encoder层加入主成分分析(PCA)算法构建的PCA−Informer模型,可提高设施栽培三七温湿度预测模型的训练效率和性能。相较于Informer模型,PCA−Informer模型预测空气温度和湿度的MAE分别减少0.140℃和0.621个百分点R2分别提高了0.0100和0.0021。3)三七设施栽培环境监测、温湿度预测和预警平台可实现设施三七未来3d温湿度精准预测和预警。

关键词: 三七, 设施栽培, 深度学习, 温湿度预测, PCA?Informer模型, 预警平台

Abstract:

Panax notoginseng has extremely high medicinal and economic value, likes temperature and humidity, temperature and humidity are important environment parameters affecting its growth. At present, the facility cultivation of Panax notoginseng is mainly based on artificial experience, and there is a serious lag in the regulation of the facility environment, which leads to Panax notoginseng being susceptible to diseases and insect pests resulting in yield reduction, and seriously hindering industry development. In this study, four deep machine learning algorithms, Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short−Term Memory Neural Network (LSTM) and Informer model, were used to preliminarily optimize the temperature and humidity prediction model of Panax notoginseng, and an improved PCA−Informer model was constructed to enhance training efficiency and model performance. At the same time, environmental monitoring sensors were deployed for data collection was achieved through environmental monitoring sensors, and the PCA−Informer model was integrated into the platform software, and the main functional modules of the platform were realized by using the Django framework combined with Python technology to develop a platform for environmental monitoring, temperature and humidity prediction and early warning systems of Panax notoginseng facility cultivation. The results showed that: (1) the informer model had the highest prediction accuracy compared with the other three deep machine learning algorithms, the mean absolute error (MAE) of air temperature and humiditywas 0.860°C and 3.870pp, and the coefficients of determination (R²) was 0.959 and 0.964, respectively. (2) The PCA−Informer model constructed by adding Principal Component Analysis (PCA) algorithm to the Encoder layer of the Informer model could improved the training efficiency and performance of the temperature and humidity prediction model of facility cultivated Panax notoginseng. Compared with the Informer model, the MAE of the PCAInformer model for predicting air temperature and humidity was reduced by 0.140°C and 0.621pp, respectively, and the R² was increased with 0.0100 and 0.0021, respectively. (3) The environmental monitoring, temperature and humidity prediction and early warning platform of Panax notoginseng facility cultivation realized the accurate prediction and early warning of temperature and humidity of Panax notoginseng in the next 3 days.

Key words: Panax notoginseng, Facility cultivation, Deep learning, Temperature and humidity prediction, PCA?Informer model, Early warning platform