中国农业气象 ›› 2026, Vol. 47 ›› Issue (1): 135-144.doi: 10.3969/j.issn.1000-6362.2026.01.012

• 高标准农田智慧气象监测与应用专刊 • 上一篇    下一篇

基于改进 YOLOv8 模型的冬小麦穗识别技术

  

  1. 1.中国气象局·河南省农业气象保障与应用技术重点实验室,郑州 450003;2.天津市气候中心,天津 300074;3.天津市西青区气象局,天津 300380;4.中国农业科学院农业环境与可持续发展研究所/农业农村部农业农村生态环境重点实验室,北京100081;5.河南省气象科学研究所,郑州 450003
  • 收稿日期:2024-12-05 出版日期:2026-01-20 发布日期:2026-01-16
  • 基金资助:
    中国气象局·河南省农业气象保障与应用技术重点开放实验室开放研究基金项目(AMF202306);国家重点研发计划项目(2023YFD1500805);中国农业科学院科技创新工程项目(CAAS-ASTIP-2024-IEDACAAS-ZDRW202419

Winter Wheat Ear Recognition Based on Improved YOLOv8

  1. 1. China Meteorological Administration·Henan Key Laboratory of Agrometeorological Ensuring and Applied Technique, Zhengzhou 450003, China; 2.Tianjin Climate Center, Tianjin 300074; 3. Tianjin Xiqing District Meteorological Bureau, Tianjin 300380; 4. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural and Rural Ecological Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081; 5. Henan Institute of Meteorological Sciences, Zhengzhou 450003
  • Received:2024-12-05 Online:2026-01-20 Published:2026-01-16

摘要:

针对大田环境中麦穗目标较小、分布稠密及重叠遮挡等问题,以无人机拍摄冬小麦为研究对象,基于YOLOv8 模型提出一种改进的冬小麦穗检测方法,在 Neck(颈部网络)增加 SimAM 注意力机制,融合GhostNetV2 模块至 Neck 的 C2f 模块中,在增强空间和通道特征表达能力、保证特征融合效率的基础上实现了模型轻量化,使得检测网络更适应复杂的大田环境下麦穗检测,同时,设置输入图像分辨率为 1280px×1280px,最大限度地保留麦穗图像中关键特征信息。结果表明:改进后的 YOLOv8 模型平均精度和 F1 分数分别为93.1%和 90.5%,权重文件仅占 18.3MB,参数量 9.4M,平均精度和 F1 分数较标准 YOLOv8 提高 0.5个和 0.8 个百分点,权重文件大小和参数量分别降低 3.3MB 和 1.7M,模型更加轻量化,整体性能优于原始YOLOv8 模型,实现了复杂环境下小目标、高重叠度的麦穗数量检测。

关键词:

麦穗, YOLOv8, 模型轻量化, 目标检测, 注意力机制

Abstract:

To address the challenges of small target size, dense distribution and occlusion among winter wheat ears in open field environments, this study focused on winter wheat captured by UAV imagery and proposed an improved detection method based on the YOLOv8 model. The SimAM attention mechanism was introduced into the Neck (Neck network) while the GhostNetV2 module was integrated into the C2f module within the Neck. These enhancements improved the representation of spatial and channel features, while maintaining efficient feature fusion and reducing model complexity. As a result, the detection network was better adapted to the complex conditions of open field winter wheat ear detection. In addition, the input image resolution was set to 1280px×1280px to maximize the preservation of critical visual features. The results showed that the improved YOLOv8 model achieved an average precision (AP) of 93.1% and an F1 score of 90.5%, with a model size of only 18.3MB and 9.4 million parameters. Compared to the original YOLOv8, the improved version yield increased of 0.5 percantage point and 0.8 percantage point in AP and F1 score, respectively, while reducing the model size and parameter counted by 3.3MB and 1.7 million parameters. The resulting model is more lightweight and efficient, outperforming the standard YOLOv8 in detecting small, densely distributed and highly occluded winter wheat ears under complex field conditions.

Key words:

Winter wheat ear, YOLOv8, Model light weighting, Target detection, Attention mechanisms