中国农业气象

• 论文 • 上一篇    下一篇

集对分析在作物产量年景预报中的应用

杨祥珠;娄伟平;   

  1. 浙江省绍兴市气象局,浙江省新昌县气象局 浙江绍兴312000
  • 出版日期:2008-02-10 发布日期:2008-02-10
  • 基金资助:
    浙江省科技计划项目“杭州湾南岸植被模式与生态气象灾害监测技术应用研究”(2002C33082);; 绍兴市科技计划项目“绍兴市北部地区生态系统监测与农业气象灾害预警预测新技术研究”(A232003131)

Application of Set Pair Analysis on Prediction of Year's Harvest of Crop Yield

YANG Xiang-zhu1,LOU Wei-ping2 (1.Meteorological Bureau of Shaoxing City,Shaoxing 312000,China;2.Meteorological Bureau of Xinchang County)   

  • Online:2008-02-10 Published:2008-02-10

摘要: 影响作物产量预报准确性的关鍵问题之一是自然条件下预报因子对作物产量影响的不确定性。本文针对作物产量预报的特点,应用集对分析中联系度的概念,将影响作物产量的预报因子分为适宜区间、影响不明显区间、不适宜区间和减产区间,进行同异反分析,建立了基于集对分析的作物产量预报模型。并对新昌县小麦产量进行预报试验,结果表明,联系度的引进改进了预报因子的合理性,能提高小麦产量预报的准确性。

关键词: 作物产量预报, 不确定性, 集对分析, 联系度

Abstract: The Uncertainty of the prediction factors which influenced the crop yield under natural conditions was one of the key issues which determined the veracity of the crop yield prediction.Based on set pair analysis and aimed at the characteristics of crop yield prediction,the crop yield prediction model was built.The prediction factors were divided into four categories,such as feasible,not significant influencing,not feasible and yield reduction,by introducing the connection degree.Taken the wheat yield prediction in Xinchang County as an example,the prediction model was validated.The results showed that the feasibility of the prediction factors and the accuracy of the wheat yield prediction were improved by using connection degree.

Key words: Crop yield prediction, Crop yield prediction, Uncertainty, Set pair analysis, Connection degree