中国农业气象 ›› 2021, Vol. 42 ›› Issue (04): 297-306.doi: 10.3969/j.issn.1000-6362.2021.04.004

• 农业生物气象栏目 • 上一篇    下一篇

基于MODIS数据的三种模型对区域玉米生产力的估算效果

钱娅,郭建茂,李羚,郭彩云,刘俊伟   

  1. 1.南京信息工程大学应用气象学院,南京 210044;2.南京信息工程大学无锡研究院,无锡 214100
  • 收稿日期:2020-10-10 出版日期:2021-04-20 发布日期:2021-04-15
  • 通讯作者: 郭建茂,副教授,从事作物模拟、农业气象、气象灾害和农业遥感研究,E-mail: 001878@nuist.edu.cn E-mail:001878@nuist.edu.cn
  • 作者简介:钱娅,E-mail: qianyc95@163.com
  • 基金资助:
    江苏省自然科学基金(BK20191139);国家气候中心数值模式发展专项(QHMS2020008)

Estimation Effect of Three Models Based on MODIS Data on Regional Maize Productivity

QIAN Ya, GUO Jian-mao, LI Ling, GUO Cai-yun, LIU Jun-wei   

  1. 1. College of Applied Meteorology, Nanjing University of Information Science &Technology, Nanjing 210044, China; 2.Wuxi Research Institute, Nanjing University of Information Science & Technology, Wuxi 214100
  • Received:2020-10-10 Online:2021-04-20 Published:2021-04-15

摘要: 总初级生产力GPP(Gross Primary Productivity,GPP)是描述陆地生态系统的关键指标,提供了全球范围内气候变化下碳元素循环的定量描述,是生态系统功能状况的重要参量,是碳循环中的关键要素,反映气候变化及人类活动对陆地植被综合影响下的结果。光能利用率LUE(Light Use Efficiency,LUE)作为总初级生产力估算模型中的关键参数,其取值受环境影响因子、时空分布差异、植被类型等众多因素影响,并直接影响模型的估算结果。为定量评价遥感植被参数在估算生态系统GPP方面的能力,以锦州玉米生产区为研究对象,基于2013−2014年的地面通量数据和MODIS卫星数据,利用APAR(Absorbed Photosynthetically Active Radiation,APAR)、LUE-PRI(Photochemical Reflectance Index,PRI)、REG-PEM(REGion Productivity Efficiency Model,REG-PEM)三种估算模型,估算不同尺度下的玉米生态系统GPP,并借助一元线性回归分析法,与锦州生态系统野外观测站的实测GPP值进行相关分析。结果表明:(1)逐日尺度上,APAR模型和REG-PEM模型都能较好地响应实际GPP值的季节性波动,其中APAR模型相对误差小于REG-PEM模型,但二者估算的GPP都存在峰值低估、谷值高估的现象,主要原因是LUEmax值在低植被覆盖区被高估,气温和水分因子对LUE的影响被低估,在重构植被指数曲线EVI、LSWI时产生不可避免的误差;(2)小时尺度上,由于中午时段太阳辐射增强、气温升高,导致植被叶片出现光饱和和午休现象,大大削弱了APAR对GPP的模拟效果。利用光化学植被指数PRI模型估算GPP,相较于APAR模型一定程度上能够提高GPP的估算精度,但模拟效果还有待提高。

关键词: MODIS, 光能利用率模型, 总初级生产力

Abstract: GPP(Gross Primary Productivity) is a key indicator to describe terrestrial ecosystem, which provides a quantitative description of carbon cycle under global climate change. It is an important indicator of ecosystem function, and it's a key element in the carbon cycle, which reflects the results of the comprehensive influence of climate change and human activities on land vegetation. As a key parameter in remote sensing estimation model, the value of LUE(Light Use Efficiency, LUE) is affected by many factors such as environmental factors, spatial and temporal distribution differences, vegetation types and so on. In order to quantitatively evaluate the ability of remote sensing vegetation parameters in estimating ecosystem GPP, Jinzhou corn production area was selected as the research object, based on the surface flux data and MODIS data from 2013 to 2014. APAR(Absorbed Photosynthetically Active Radiation, APAR) model, PRI(Photochemical Reflectance Index, PRI) model and REG-PEM(REGion Productivity Efficiency Model, REG-PEM) model were established to estimate the GPP of sites on different time scales. With the help of correlation analysis method, the results are as follows: (1) on diurnal scale, the seasonal dynamics of estimated GPP from REG-PEM model and APAR model both matched reasonably well with those of observed GPP from eddy covariance flux. Relative error of estimated GPP from APAR model was less than that from REG-PEM model. However, the phenomenon of estimated GPP was overrated in GPP low-value area while underrated in high-value area, existed in both two models. The main reason is that LUEmax was overestimated in the low vegetation coverage area, and the influence of air temperature and moisture on LUE was underestimated. There are inevitable errors in the reconstruction of vegetation index curve EVI and LSWI. (2) On hour scale, especially at midday, the solar radiation and the temperature are increased, the phenomenon of light saturation and midday break in vegetation leaves greatly weakens the response ability of APAR to GPP and weakens the simulation effect, the ability of APAR in response to GPP had weakened. Compared with APAR model, the accuracy of GPP estimation can be improved by using PRI model, but the simulation effect needs to be improved.

Key words: MODIS, LUE Model, GPP