中国农业气象 ›› 2021, Vol. 42 ›› Issue (04): 297-306.doi: 10.3969/j.issn.1000-6362.2021.04.004
钱娅,郭建茂,李羚,郭彩云,刘俊伟
QIAN Ya, GUO Jian-mao, LI Ling, GUO Cai-yun, LIU Jun-wei
摘要: 总初级生产力GPP(Gross Primary Productivity,GPP)是描述陆地生态系统的关键指标,提供了全球范围内气候变化下碳元素循环的定量描述,是生态系统功能状况的重要参量,是碳循环中的关键要素,反映气候变化及人类活动对陆地植被综合影响下的结果。光能利用率LUE(Light Use Efficiency,LUE)作为总初级生产力估算模型中的关键参数,其取值受环境影响因子、时空分布差异、植被类型等众多因素影响,并直接影响模型的估算结果。为定量评价遥感植被参数在估算生态系统GPP方面的能力,以锦州玉米生产区为研究对象,基于2013−2014年的地面通量数据和MODIS卫星数据,利用APAR(Absorbed Photosynthetically Active Radiation,APAR)、LUE-PRI(Photochemical Reflectance Index,PRI)、REG-PEM(REGion Productivity Efficiency Model,REG-PEM)三种估算模型,估算不同尺度下的玉米生态系统GPP,并借助一元线性回归分析法,与锦州生态系统野外观测站的实测GPP值进行相关分析。结果表明:(1)逐日尺度上,APAR模型和REG-PEM模型都能较好地响应实际GPP值的季节性波动,其中APAR模型相对误差小于REG-PEM模型,但二者估算的GPP都存在峰值低估、谷值高估的现象,主要原因是LUEmax值在低植被覆盖区被高估,气温和水分因子对LUE的影响被低估,在重构植被指数曲线EVI、LSWI时产生不可避免的误差;(2)小时尺度上,由于中午时段太阳辐射增强、气温升高,导致植被叶片出现光饱和和午休现象,大大削弱了APAR对GPP的模拟效果。利用光化学植被指数PRI模型估算GPP,相较于APAR模型一定程度上能够提高GPP的估算精度,但模拟效果还有待提高。