中国农业气象 ›› 2024, Vol. 45 ›› Issue (10): 1216-1235.doi: 10.3969/j.issn.1000-6362.2024.10.11

• 农业气象概念方法 栏目 • 上一篇    下一篇

农业气象灾害知识图谱构建研究进展

邱明慧,谢能付,姜丽华,吴焕萍,陈颖,李永磊   

  1. 1.中国农业科学院农业信息研究所,北京 100081;2.中国气象局国家气候中心,北京 100081;3.农业农村部区块链农业应用重点实验室,北京 100081
  • 收稿日期:2023-11-16 出版日期:2024-10-20 发布日期:2024-10-17
  • 作者简介:邱明慧,E-mail:82101222478@caas.cn
  • 基金资助:
    新一代人工智能国家科技重大专项“农业大灾风险综合集成智能分析与决策研究”(2022ZD0119500)

Research on the Construction of Knowledge Graphs for Agricultural Meteorological Disasters: A Review

QIU Ming-hui, XIE Neng-fu, JIANG Li-hua, WU Huan-ping, CHEN Ying, LI Yong-lei   

  1. 1. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. National Climate Center, China Meteorological Administration, Beijing 100081; 3.Key Laboratory of Agricultural Blockchain Application, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2023-11-16 Online:2024-10-20 Published:2024-10-17

摘要:

海量异构数据的高效利用是提升农业灾害管理智能化水平的关键因素,探索多源异构的农业气象灾害知识图谱构建技术对农业气象灾害动态监测与智能化管理决策具有重要意义。本文通过文献调研深入分析农业气象灾害领域知识图谱构建所需的数据来源、类型及特点,按照自顶向下与自底向上相结合的知识图谱构建框架,从模式层构建、实体抽取、关系抽取和知识融合4个视角分析构建知识图谱的关键技术及应用现况;探究农业气象灾害知识图谱在农业气象灾害监测预警、风险评估、智能服务、决策支持领域的应用,总结农业气象灾害知识图谱构建面临的挑战,讨论农业气象灾害知识图谱的未来发展方向。不同模态的信息整合可使知识图谱更全面、准确地表达农业气象灾害领域的知识和信息,有助于更好地评估农业气象灾害带来的损失,提高决策的准确性和效率。未来结合大语言模型,借鉴先进的知识抽取方法实现复杂实体及关系抽取,整合多模态数据构建多模态知识图谱,进一步优化农业气象灾害知识图谱技术方法。

关键词: 农业气象灾害, 知识图谱, 知识抽取, 知识融合

Abstract:

Efficient utilization of massive heterogeneous data is the key factor to enhance the intelligence of agricultural disaster management. Therefore, it is important to explore techniques for constructing multi-source heterogeneous agricultural meteorological disaster knowledge graphs for dynamic monitoring of agricultural meteorological disasters and intelligent management decision making. This paper analyzed the data sources, types, and characteristics required for knowledge graph construction in the agricultural meteorological disaster domain through literature studies and proposed a framework for knowledge graph construction that combined top-down and bottom-up approaches. The paper also examined key techniques and the current application status of knowledge graph construction from the perspective of schema layer construction, entity extraction, relation extraction, and knowledge fusion. In addition, it explored the applications of agricultural meteorological disaster knowledge graphs in the fields of monitoring and early warning, risk assessment, intelligent service, and decision support. It summarized the challenges of constructing agricultural meteorological disaster knowledge graphs and discussed the future development directions. Integrating information from the different modalities could make knowledge graph more comprehensive and accurate in describing and expressing the knowledge and information in the field of agricultural meteorological disasters, which could help to mitigate the losses caused by agricultural meteorological disasters and improve the accuracy and efficiency of decision-making. In the future, agricultural meteorological disaster knowledge graph will be constructed by incorporating large language models, advanced knowledge extraction methods to achieve complex entity and relationship extraction, and multi modal data. Further research is needed to advance the technical study of agricultural meteorological disaster knowledge graph.

Key words: Agricultural meteorological disasters, Knowledge graph, Knowledge extraction, Knowledge fusion