中国农业气象 ›› 2024, Vol. 45 ›› Issue (12): 1438-1449.doi: 10.3969/j.issn.1000-6362.2024.12.005

• 农业生态环境栏目 • 上一篇    下一篇

茶树冠层温度与大气温度变化规律及相互关系

陶瑶,余焰文,杨爱萍,吴文心,陈娇娇,蔡哲,张晓芳   

  1. 1.江西省上饶市气象局,上饶 334000;2.南昌农业气象试验站,南昌 330200;3.江西省抚州市气象局,抚州 344000;4.江西省农业气象中心,南昌 330096;5.婺源县气象局,上饶 333200
  • 收稿日期:2024-02-26 出版日期:2024-12-20 发布日期:2024-12-20
  • 作者简介:陶瑶,E-mail:1240447330@qq.com
  • 基金资助:
    南昌市农业气象重点实验室开放研究基金课题(2020NNZS203);江西省气象局青年人才培养项目(JX2023Q03)

Variation and Relationship between Tea Tree Canopy Temperature and Atmospheric Temperature

TAO Yao, YU Yan-wen, YANG Ai-ping, WU Wen-xin , CHEN Jiao-jiao, CAI Zhe, ZHANG Xiao-fang   

  1. 1.Shangrao Meteorological Bureau of Jiangxi Province, Shangrao 334000, China; 2.Nanchang Agrometeorological Experimental Station, Nanchang 330200; 3.Fuzhou Meteorological Bureau of Jiangxi Province, Fuzhou 344000; 4.Jiangxi Agricultural Meteorological Center, Nanchang 330096; 5.Wuyuan Meteorological Bureau, Shangrao 333200
  • Received:2024-02-26 Online:2024-12-20 Published:2024-12-20

摘要:

冠层环境温度差可间接监测茶树热量和水分变化,茶树冠层温度与茶园大气温度的时滞效应会影响监测效果。为探明两者的时滞效应与变化规律,基于20203−9月婺源地区茶园小气候站和附近国家气象站监测资料,分析不同茶叶采摘季不同天气类型下,茶树冠层和茶园大气温度的变化特征。采用线性回归方法,按不同天气类型分别建立日平均冠层温度和茶园大气温度推算模型并进行检验,为茶叶气象服务提供数据支撑。结果表明:(1不同茶叶采摘季和不同天气类型下,茶树冠层和茶园大气温度的日变化都呈明显单峰变化趋势,但冠层温度变化强度大于茶园大气温度,且达到峰值时间早于茶园大气温度1h左右。(2)全24h小时温差总体表现为春茶>秋茶>夏茶,晴天>多云>阴雨天;中午前后冠层温度高于或接近茶园大气温度,阴雨天各时次冠层温度均比茶园大气温度偏低。3从日平均气温看,冠层温度低于茶园大气温度12℃,但两者变化趋势一致。(4)日平均冠层温度和茶园大气温度推算模型均通过了0.01水平显著性检验,模拟效果总体较好,其中茶园大气温度推算模型效果好于冠层温度;不同天气类型下,阴雨天温度推算模型效果最好,晴天次之,多云天气类型相对较差。

关键词: 茶树, 冠层温度, 大气温度, 时滞效应, 相关模型

Abstract:

The difference of canopy-air temperature can indirectly monitor the variation of tea tree heat and moisture. However, the time lag effect between the tea tree canopy temperature and atmospheric temperature of tea plantation will affect the monitoring effect. In order to explore the time lag effect and the variation law between canopy temperature and atmospheric temperature, the variation characteristics of tea tree canopy temperature and atmospheric temperature of tea plantation during different tea picking seasons and different weather types were analyzed based on the monitoring data of microclimate station in tea plantation and near national meteorological station in Wuyuan from March to September in 2020. The simulated models of daily average canopy temperature and atmospheric temperature of tea plantation according to different weather types were established through the linear regression method and tested to provide data support for tea meteorological service. The results showed that: (1) the diurnal variation of tea tree canopy temperature and atmospheric temperature of tea plantation showed an obviously single-peak trend during different tea picking seasons and different weather typeswhile the change intensity of canopy temperature was greater than that of atmospheric temperature of tea plantation, and the peak time of canopy temperature was generally about 1h earlier than that of atmospheric temperature of tea plantation. (2) The point temperature difference of tea tree canopy and atmospheric temperature of tea plantation within 24h a day were generally ranked as spring teaautumn teasummer tea, sunny dayscloudy daysrainy days. In general, the canopy temperature was above or near to the atmospheric temperature of tea plantation around noon, while the canopy temperature was lower than the atmospheric temperature of tea plantation at all times in rainy days. (3) From the aspects of daily average temperature, it showed that the canopy was generally lower (1-2) than which in the atmosphere, but the changing trend was the same. (4) All kinds of daily average temperature prediction models were approved by 0.01 level significant test, which meaned the simulation effect were good generally. Whats more, the simulation effect of the atmospheric temperature of tea plantation prediction models were better than that of canopy temperature. In addition, under different weather types, the optimal effect of the prediction models were demonstrated in rainy days, followed by sunny days, and relatively poor in cloudy days.

Key words: Tea tree, Canopy temperature, Atmospheric temperature, Time lag effect, Correlation model.