中国农业气象 ›› 2025, Vol. 46 ›› Issue (2): 258-269.doi: 10.3969/j.issn.1000-6362.2025.02.012

• 农业气象灾害栏目 • 上一篇    下一篇

基于机器学习的极端气候事件对东北玉米气象产量影响评估

唐捷, 董美琦, 赵锦, 李浩天, 杨晓光   

  1. 1.中国农业大学资源与环境学院,北京 100193;

    2.沈阳市气象局,沈阳 110168;

  • 收稿日期:2024-03-08 出版日期:2025-02-20 发布日期:2025-02-20
  • 通讯作者: 赵锦 E-mail:jinzhao@cau.edu.cn
  • 基金资助:

    国家重点研发计划专项项目(2023YFD1500200

    国家自然科学基金项目42205192);

Impact Assessment of Extreme Climate Events on Maize Meteorological Yield in Northeast China by Machine Learning

TANG Jie, DONG Mei-qi, ZHAO Jin, LI Hao-tian, YANG Xiao-guang   

  1. 1. College of Resources and Environment Sciences, China Agricultural University, Beijing 100193, China;

    2. Shenyang Meteorological Bureau, Shenyang 110168;

  • Received:2024-03-08 Online:2025-02-20 Published:2025-02-20
  • Contact: ZHAO Jin E-mail:jinzhao@cau.edu.cn

摘要:

全球气候变化背景下,极端气候事件的频率、强度和持续时间均不断增加、增强,对农业生产带来极大影响。东北三省是中国玉米主产区,也是受气候变化影响最显著的区域,探究极端气候事件对东北三省玉米气象产量的影响对保障粮食安全和经济发展至关重要。本文基于气象观测数据和玉米产量统计数据,构建玉米气象产量机器学习模型,明确历史(1981-2014年)和未来(2031-2060年)极端气候事件对东北玉米气象产量的影响。结果表明:历史时段内,高温和高温干旱灾害对玉米气象产量影响最大,气象产量分别减少13.2%和15.9%。与极端降水事件相比,极端温度事件对玉米气象产量影响更大。未来气候变化情景下,东北三省仍表现为变暖趋势,与SSP1-2.6(低排放)情景相比SSP5-8.5(高排放)情景下的东北玉米减产幅度更加明显,且未来需更加关注极端降水事件对东北三省玉米气象产量的影响。

关键词:

东北地区, 玉米气象产量, 机器学习, 极端温度事件, 极端降水事件

Abstract:

In the context of global climate change, the frequency, intensity, and duration of extreme climate events are increasing and strengthening, which greatly affects agricultural production. The three provinces in Northeast China are the main maize-producing areas in the country, and the region most significantly affected by climate change. It is crucial to explore the effects of extreme climate events on maize meteorological yield in the three provinces and safeguard China's food security and economic development. In the current study, a machine learning model was constructed based on the historical meteorological data and statistical maize yield data to clarify the impact extreme climate events on maize meteorological yield in northeast China during the historical (1981−2014) and future (2031−2060) periods. The results showed that high temperature and high- temperature-drought compound events had the greatest impact on maize meteorological yield during the historical period, with meteorological yield decreasing by 13.2% and 15.9%, respectively. Meanwhile, the extreme temperature events had a greater impact on maize meteorological yield compared to extreme precipitation events. In the future, the climate show a warming trend, Compared with the SSP1−2.6 (low−emission) scenario, the magnitude of maize meteorological yield reduction in Northeast China under the SSP5-8.5 (high-emission) scenario is more pronounced, and more attention needs to be paid to the impact of extreme precipitation events on maize meteorological yield in the future.

Key words:

Northeast China, Maize meteorological yield, Machine learning, Extreme temperature events, Extreme precipitation events