中国农业气象 ›› 2024, Vol. 45 ›› Issue (02): 135-146.doi: 10.3969/j.issn.1000-6362.2024.02.003
吴慧臻,李东升,杨再强,张丰寅,陈旸
WU Hui-zhen, LI Dong-sheng, YANG Zai-qiang, ZHANG Feng-yin, CHEN Yang
摘要: 利用2021年2月27日-2023年3月4日南京信息工程大学Venlo型玻璃温室内、外气象观测数据,基于多元回归(Multiple regression,MR)、BP人工神经网络(BP artificial neural networks,BPANN)、随机森林(Random forest,RF)和支持向量机(Support vector machine,SVM)构建温室内日平均气温、日最低气温和日最高气温的季节预报模型,并进行验证。结果表明:温室内日平均气温、日最低气温季节预报模型的拟合精度明显高于日最高气温季节预报模型;各模型对春、夏、秋季温室内气温的拟合精度高于冬季。对于日平均气温和日最低气温季节预报模型而言,4种算法构建的春、夏、秋季预报模型的拟合精度均较高,RF模型模拟效果更为稳定,其模拟值与实际观测值决定系数(R2)均值均在0.94以上,均方根误差(RMSE)、绝对误差(MAE)均值在1.5℃以内;对于日最高气温季节预报模型,RF模型对春、夏、秋季的拟合精度整体高于其他模型,R2均值均在0.75以上。MR模型对冬季室内气温的拟合精度较好,更适用于预测冬季温室内气温。综合而言,选择RF模型预报春、夏、秋季的玻璃温室内气温,选择MR模型预报冬季玻璃温室内气温较为可行。