中国农业气象 ›› 2019, Vol. 40 ›› Issue (08): 523-533.doi: 10.3969/j.issn.1000-6362.2019.08.005

• 论文 • 上一篇    下一篇

不同水分条件下葡萄临界氮稀释曲线模型的建立及氮素营养诊断

李佳帅,杨再强,李永秀,江梦圆,赵和丽,韦婷婷,张旭然   

  1. 1.南京信息工程大学气象灾害预报预警与评估协同创新中心,南京 210044;2.江苏省农业气象重点实验室,南京 210044
  • 出版日期:2019-08-20 发布日期:2019-08-01
  • 作者简介:李佳帅(1993?),女,研究方向为设施农业气象。E-mail:596993884@qq.com
  • 基金资助:

    江苏省科技支撑项目(BE2015693)

Establishment of a Critical Nitrogen Dilution Model for Grapes and Nitrogen Nutrition Diagnosis under Different Water Conditions

LI Jia-shuai, YANG Zai-qiang, LI Yong-xiu, JIANG Meng-yuan, ZHAO He-li, WEI Ting-ting, ZHANG Xu-ran   

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2.Jiangsu Provincial Key Laboratory of Agrometeorology, Nanjing 210044
  • Online:2019-08-20 Published:2019-08-01

摘要:

以1a生葡萄植株“红提”为试材,在Venlo型试验温室内进行土壤水分和施氮量双因素区组试验。试验设置4个灌水水平,分别为正常灌溉量W1(田间最大持水量的70%~80%)、轻度水分胁迫W2(60%~70%)、中度水分胁迫W3(50%~60%)和重度水分胁迫W4(30%~40%);设置4个施氮水平,分别为1.5倍推荐施氮量(N1,25.5g plant-1)、正常推荐施氮量(N2,17g plant-1)、0.5倍推荐施氮量(N3,8.5g plant-1)和不施用氮肥(N4,0g plant-1)。每10d观测一次植株体内氮浓度和植株地上部生物量,利用不同水分条件下葡萄植株在一定生长时期内所获最大生物量时对应的最小氮浓度值即临界氮浓度(Nc)构建葡萄临界氮浓度稀释曲线模型,并在此基础上建立氮素吸收模型(Nupt)和氮素营养指数模型(NNI),对不同水分条件下葡萄氮营养状况进行定量诊断。结果表明:设施葡萄植株临界氮浓度与地上部生物量存在幂函数关系,随着灌水量的增加,葡萄植株临界氮浓度值增大,氮素吸收量及地上部生物量也呈增加趋势;在W1、W2水分条件下,葡萄植株生物量随施氮量增加而增加,而W3和W4处理葡萄生物量随施氮量增加呈先增后降的趋势;在相同水分条件下,氮浓度随施氮量增加而增加,随葡萄生长进程而降低;利用Nupt和NNI模型可对植株体内氮营养元素亏缺与否进行有效诊断。

关键词: 葡萄, 临界氮浓度, 氮素营养指数, 氮素吸收, 干物质积累

Abstract:

In this paper, a two-factor pot experiment was carried out in the Venlo-type greenhouse, using the annual grape of "Hongti" variety as experimental material. There were four irrigation levels and four nitrogen application levels in the two-factor pot experiment. Four irrigation levels were normal irrigation (W1, 70%-80% of the maximum water holding capacity in the field), slight drought stress (W2, 60%-70%), moderate drought stress (W3, 50%-60%) and extra severe drought tress (W4, 30%-40%). And four nitrogen application levels were 1.5 times normal recommended nitrogen application rate(N1, 25.5gplant-1), normal recommended nitrogen application rate(N2, 17gplant-1), 0.5 times normal recommended nitrogen application rate(N3, 8.5gplant-1) and no nitrogen application(N4, 0gplant-1). The nitrogen concentration in the plant and the aboveground biomass of the plant were observed every 10 days. The minimum nitrogen concentration corresponding to the maximum biomass obtained by grape plants under different water conditions in a certain period is called Nitrogen critical concentration (Nc), it can be used to construct the model of nitrogen critical concentration dilution curve of grape, which can further establish Nitrogen uptake model (Nupt) and Nitrogen Nutrition Index model (NNI) for quantitative diagnosis of nitrogen nutrition status of grapes under different water conditions.The results showed: there was a power function relationship between the nitrogen critical concentration and aboveground biomass of grape plants, which embodied as the nitrogen critical concentration, nitrogen uptake and aboveground biomass of grape plants all increased as the irrigation amount increasing. As nitrogen application increased, the biomass of grape plants under treatments of W1 and W2 increased, while that under W3 and W4, increased first and then decreased. Under the same water condition, the nitrogen concentration increased with the increase of nitrogen application and decreased with the progress of grapes growth. The established Nupt and NNI models can be used to effectively diagnose the deficiency of nitrogen nutrients in plants.

Key words: Grape, Nitrogen critical concentration, Nitrogen nutrition index, Nitrogen uptake, Dry matter accumulation