利用WRF-STILT模型模拟玉米种植区生长季(6-9月)小时CO2浓度,并基于美国最大农业种植区‘玉米带’100m高塔CO2浓度观测数据,对WRF-STILT模型的模拟能力及CO2通量的不确定性对模拟结果的影响进行分析。结果表明:(1)WRF-STILT能够模拟高塔观测的CO2浓度日变化特征,模拟值与观测值的均方根误差为13.70molmol-1,模拟结果偏高7.26molmol-1。(2)EDGAR和Carbon Tracker两种典型化石燃料的CO2通量,其区域平均值相差<6%,但两者对CO2浓度增加值的模拟结果相差约10%;(3)CO2通量空间分辨率的差异会导致模拟结果产生偏差,使用区域边长为1o的EDGAR化石燃料CO2通量模拟的浓度贡献值仅为0.1o的0.4倍,且空间分辨率越低,模拟误差越大;(4)白天和夜晚Carbon Tracker模拟的植被生态系统净交换数据是高塔涡度相关方法观测结果的2.26和1.56倍,下垫面分类的误差以及相应的通量模拟误差使模拟的CO2浓度贡献出现12molmol-1的差异,这是模拟结果偏高7.26molmol-1的潜在误差来源。研究认为,WRF-STILT模型和高空间及时间分辨率的CO2通量能够较好模拟出农业区生长季的CO2强日变化特征,CO2通量的误差是模拟结果误差的主要来源,研究结果表明该方法具有评估和优化通量的巨大潜力。