传统单站点天气发生器未考虑不同站点气象变量间的空间相关性,导致其在区域影响评价中的应用受到限制,而多站点天气发生器可以克服单站点天气发生器的缺点,近年来得到迅速发展。评估和验证多站点天气发生器对区域历史气象场特征的重现能力是开展影响评价的前提和基础。为此,本研究选取MulGETS(参数型)和k-NN(非参数型)发生器为代表模型,利用湘江流域12个气象站点1981−2010年日序列降水量、最高气温、最低气温资料,通过均值、标准差、偏度、极值、空间相关系数、空间连接度和自相关系数等指标的对比,评估了MulGETS和k-NN模型的优缺点及适用性。结果表明:MulGETS和k-NN模型均较好地再现了原气象场的均值、标准差和偏度,k-NN表现稍好于MulGETS。同时k-NN相比MulGETS在保持气象要素空间相关性上具有优势,特别是降水量的空间间歇性。由于算法本身的限制,k-NN无法模拟出超出历史数据范围的极值,而MulGETS具备一定的极值模拟能力。此外,MulGETS和k-NN在重现原始日尺度降水量的自相关性上均存在不足。总体来看,两个模型各具优势和不足,MulGETS更适于极端气象事件模拟,而k-NN可以更好地体现原始气象场的空间差异,实际使用时应根据不同的研究目的选择合适的模型。