Chinese Journal of Agrometeorology ›› 2020, Vol. 41 ›› Issue (07): 459-469.doi: 10.3969/j.issn.1000-6362.2020.07.006

Previous Articles     Next Articles

 Temporal and Spatial Variations of Meteorological Drought and Drought Risk Analysis in Hedong Area of Gansu Province

 HUANG Hao, ZHANG Bo, MA Shang-qian, MA Bin, CUI Yan-qiang, WANG Xiao-dan, MA Chun-rong, CHEN Kun-quan, ZHANG Ting   

  1.  1.College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China; 2. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100083; 3. College of Education, Northwest Normal University, Lanzhou 730070; 4. College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404199; 5. Fudan University Law School, Shanghai 200438
  • Online:2020-07-20 Published:2020-08-25
  • Supported by:
     

Abstract:  Meteorological drought in rain-fed agricultural areas has always been the focus of attention, especially for the area at the junction of monsoon and arid areas with less precipitation. Understanding the characteristics of meteorological drought is particularly important for agricultural production. Based on the monthly climate data of 60 meteorological stations from 1988 to 2017 in Hedong, Gansu,linear tendency estimation, Mann-Kendall abrupt change detection, wavelet power spectrum and hurst index were used to analyze the spatio temporal changes, abrupt change, periods of change and the continuity of trends of the three drought indicators: occurrence times, intensity and duration of drought events in Hedong area. The risk of meteorological drought in different time periods in Hedong area was shown by the drought risk index. The results showed that, firstly, as for the interannual change, the occurrence times, intensity and duration of drought events in Hedong area increased significantly (P < 0.05) from 1988 to 2017, and t-1, 0.61level·10y-1 and 0.48months·10y-1 respectively. Among all the geographic zones, increasing trend in Longzhong plateau was the most significant. Secondly, in space, the proportions of stations with significant increase in the occurrence times, intensity and duration of droughts events among the total stations were 18.0%, 31.1% and 26.2% respectively. There were only a few stations with decreasing trend in Hedong area, but the change trend of these stations was not significant (P>0.05). Thirdly, the Hovmoller chart showed that the occurrence times, intensity and duration of drought events were clustered in years and space, reflecting that the adjacent stations in Hedong area had similar spatial and temporal characteristics of drought. The Hurst index showed that in the future, the occurrence times, intensity and duration of drought events in most area of Hedong will still maintain an increasing trend, but there was only a small area with strong persistence (hurst values close to 1). What’s more, the drought indicator abrupt change appeared in 1994, the occurrence times, intensity, and duration of drought events after the abrupt change increase by 0.76 times, 2.29 level, 1.70 months, which also reflected the trend of drought in recent years. The oscillation period of drought index in Hedong area was within 6 years, reflecting that drought has a short-term fluctuation. Furthermore, the area with the highest risk of drought among all study areas within 30 years was Longzhong plateau. However, there was a significant difference in the distribution of drought risk in study areas in every 10 years. From 1988 to 1997, Hedong area faced the greatest drought risk, while from 2008 to 2017, the drought risk was relatively small.

Key words:  Standardized precipitation evapotranspiration index(SPEI), Gansu, Meteorological drought, Hedong area, Drought risk

CLC Number: