中国农业气象 ›› 2017, Vol. 38 ›› Issue (10): 632-643.doi: 10.3969/j.issn.1000-6362.2017.10.002

• 论文 • 上一篇    下一篇

APSIM玉米模型中辐射估算的误差传输

毛洋洋,赵艳霞,张祎,胡正华,魏亮   

  1. 1.河南省气象培训中心,郑州 450003;2.中国气象科学研究院,北京 100081;3.南京信息工程大学气象灾害预报预警与评估协同创新中心/耶鲁大学-南京信息工程大学大气环境中心,南京 210044
  • 收稿日期:2017-02-23 出版日期:2017-10-20 发布日期:2017-10-10
  • 作者简介:毛洋洋(1988-),女,硕士,主要研究方向为作物模型。E-mail:1306772090@qq.com
  • 基金资助:
    国家自然科学基金(41505097);公益性行业(气象)科研专项(GYHY201406026)

Errors Transmission of Radiation Estimation in APSIM Maize Model

MAO Yang-yang, ZHAO Yan-xia, ZHANG Yi, HU Zheng-hua, WEI Liang   

  1. 1.Meterological Training Center in He'nan Province, Zhengzhou 450003, China; 2.Chinese Academy of Meteorological Sciences, Beijing 100081; 3.Collaborative Innovation Center on Forecast Meteorological Disaster Warning and Assessment, Nanjing University of Information Science & Technology/Yale-NUIST Center on Atmospheric Environment, Nanjing 210044
  • Received:2017-02-23 Online:2017-10-20 Published:2017-10-10

摘要: 以华北地区3个典型站点(山东省莒县站、河南省郑州和南阳站)为研究对象,分析计算玉米生长期间Angstrom-Prescott模型、Ogelman模型、Bahel模型、日照百分率和气温日较差综合模型(简称综合模型)和刘可群等太阳总辐射估算模型的相对误差,分别将该5个模型估算结果和太阳辐射实测值(依次命名为模拟方案1-5和模拟方案0)输入APSIM玉米模型,计算各模型驱动APSIM玉米模型模拟产量的相对误差,分析由于太阳辐射估算误差对模型产量模拟结果造成的误差传输。结果表明,5个日太阳辐射模型在生长期内的平均估算误差(εi)在莒县站以A-P模型最小,在郑州和南阳站点以综合模型最小;各辐射估算模型对APSIM模型的产量模拟结果均有明显影响,综合模型模拟结果最好,其驱动APSIM模拟的玉米产量误差最小;5个辐射模型估算误差对APSIM模型模拟玉米产量的误差均有放大效应,Angstrom-Prescott模型、Ogelman模型、Bahel模型、综合模型和刘可群等模型辐射误差分别以2.23、2.28、1.63、1.85、1.90倍传输到APSIM玉米模型模拟的产量误差,可见,一定要重视辐射模型的选取和辐射模型经验系数的确定;评价5个辐射模型的误差传输到产量的误差,要综合考虑辐射模型本身的误差和辐射误差传输到产量误差中放大的效应两方面的影响,综合模型传输到产量的误差最小。因此,在华北地区无太阳总辐射实测值的地区使用APSIM模型时,本研究推荐辐射方案4即综合模型为首选模型。

关键词: 太阳辐射模型, 作物模型, 模拟误差, 误差传输, 华北地区

Abstract: Taking three typical maize land sites in North China (Juxian station in Shandong province, Zhengzhou and Nanyang stations in Henan province) as the research objects, the effects of radiation models on crop yield simulation were investigated. Five radiation models, including the Angstrom-Prescott (A-P) model, Ogelman model, the Bahel model, the comprehensive model of sunshine duration and diurnal temperature range model (referred to as the comprehensive model), and Liu’s model (followed by simulation scheme 1-5) , were used to simulate the total solar radiation and validated against measurement (simulation scheme 0). The radiation results of the five models were further utilized to drive APSIM model to simulate the maize yield. The results showed that the estimated errors(εi)of A-P model was the smallest in the Juxian station, and that of the comprehensive model was the smallest in Zhengzhou and Nanyang stations. Different radiation estimation models had significantly different effects on yield simulation results of APSIM model, scheme 4 rendered the best result. The radiation errors brought by the five radiation models had enlarged the final results of maize yield simulated by APSIM model. The propagation error transferred to APSIM maize model simulation yield was 2.23, 2.28, 1.63, 1.85, 1.90 for the A-P model, the Ogelman model, the Bahel model, the comprehensive model, and the Liu’s model, respectively. It is obvious that the selection of the radiation model and the empirical coefficient of the radiation model should be taken into full consideration; with regard to the errors of crop yield simulation caused by radiation models two factors should be taken into account: the errors of the five radiation models and these errors transmitted to the crop model with augmentation. Generally speaking, Scheme 4 has the smallest error compared with other schemes. Therefore it was recommended to use scheme 4 to drive APSIM model in the absence of field measured radiation.

Key words: Solar radiation model, Crop model, Simulation errors, Errors transmission, Northern China Plain