中国农业气象 ›› 2020, Vol. 41 ›› Issue (05): 275-287.doi: 10.3969/j.issn.1000-6362.2020.05.002
杨珍珍,朱昌雄,田云龙,李红娜
出版日期:
2020-05-20
发布日期:
2020-05-14
作者简介:
杨珍珍,E-mail:yangzhenz@126.com
基金资助:
YANG Zhen-zhen, ZHU Chang-xiong, Tian Yun-long, Li Hong-na
Online:
2020-05-20
Published:
2020-05-14
Supported by:
摘要: 抗生素被广泛用于医疗、畜牧以及水产养殖等领域,大量抗生素未经代谢就进入环境,由此引起的细菌耐药性问题严重威胁着生态环境和人体健康。因而,如何有效控制废水中的抗生素和抗性基因污染成为近年来的研究重点。微生物燃料电池(Microbial fuel cells,MFCs)利用微生物催化降解有机物,在产电的同时实现废水处理和污染控制,是近些年研究较多的一种处理技术。本文综述了MFCs对废水中抗生素、抗性基因等污染物的去除效果、降解机理以及降解过程中微生物群落的变化规律,分析了MFCs与其它技术耦合的效果和机制,概述了应用MFCs构建传感器在线监测抗生素等方面的研究进展。结果表明:MFCs对多种抗生素都具有良好的去除效果,随着反应器构型、抗生素种类以及浓度和运行时间等参数的不同,抗生素、抗性基因的去除效果以及阳极微生物群落有较大差异;MFCs与人工湿地等技术的耦合,有利于增强抗生素的去除效果,为MFCs的实际应用提供了新方向;利用MFCs作为生物传感器可实现废水中抗生素含量的在线监测,但目前尚处于起步阶段。基于上述结论,MFCs可以有效地去除废水中的抗生素,但对抗生素耐药基因的控制效果还亟待研究;如何实现MFCs的长期稳定运行并实际应用是后续研究的重点方向。
中图分类号:
杨珍珍,朱昌雄,田云龙,李红娜. 微生物燃料电池去除废水中抗生素类污染物的研究进展[J]. 中国农业气象, 2020, 41(05): 275-287.
YANG Zhen-zhen, ZHU Chang-xiong, Tian Yun-long, Li Hong-na. Research Progresses in Microbial Fuel Cells for Antibiotic Wastewater Treatment[J]. Chinese Journal of Agrometeorology, 2020, 41(05): 275-287.
[1] Baran W,Adamek E,Ziemianska J,et al.Effects of the presence of sulfonamides in the environment and their influence on human health[J].J Hazard Mater,2011,196:1-15. [2] Huang X,Liu C,Li K,et al.Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China[J].Environmental Science and Pollution Research,2013, 20(12):9066-9074. [3] Zhang Y,Zhu H,Szewzyk U,et al.Enhanced Removal of sulfamethoxazole with manganese-adapted aerobic biomass[J]. International Biodeterioration & Biodegradation, 2017,116: 171-174. [4] Zhang Q Q,Ying G G,Pan C G,et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis,multimedia modeling,and linkage to bacterial resistance[J].Environmental Science & Technology, 2015,49(11):6772-6782. [5] Berendonk T U,Manaia C M,Merlin C,et al.Tackling antibiotic resistance: the environmental framework[J].Nature Reviews Microbiology,2015,13(5):310-317. [6] Sommer M O A,Munck C,Toft-Kehler R V,et al.Prediction of antibiotic resistance: time for a new preclinical paradigm[J]. Nat Rev Microbiol,2017,15(11):689-696. [7] Rodriguez-Mozaz S,Chamorro S,Marti E,et al.Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river[J]. Water Research,2015,69:234-242. [8] Wu D,Huang Z,Yang K,et al.Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai,China[J].Environ Sci Technol,2015,49(7):4122-4128. [9] Yoon Y,Chung H J,Di D Y W,et al.Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine,UV,and UV/H2O2[J].Water Research, 2017,123:783-793. [10] Sullivan B A,Vance C C,Gentry T J,et al.Effects of chlorination and ultraviolet light on environmental tetracycline-resistant bacteria and tet(W) in water[J].Journal of Environmental Chemical Engineering,2017,5(1): 777-784. [11] ?zcan A,?zcan A A,Demirci Y.Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment[J].Chemical Engineering Journal, 2016,304:518-526. [12] Wang Y,Zhang H,Feng Y,et al.Bio-Electron-Fenton(Bef) process driven by Sediment Microbial Fuel Cells (Smfcs) for antibiotics desorption and degradation[J].Biosens Bioelectron,2019,136:8-15. [13] Wei Z,Liu J,Fang W,Xu M,et al.Photocatalytic hydrogen evolution with simultaneous antibiotic wastewater degradation via the visible-light-responsive bismuth spheres-G-C3n4 nanohybrid: waste to energy insight[J]. Chemical Engineering Journal,2019,358:944-954. [14] Fernandez L,Gamallo M,Gonzalez-Gomez M A,et al.Insight into antibiotics removal: exploring the photocatalytic performance of a Fe3O4/ZnO nanocomposite in a novel magnetic sequential batch reactor[J].J Environ Manage, 2019,237:595-608. [15] Amoli-Diva M,Irani E,Pourghazi K.Photocatalytic filtration reactors equipped with bi-plasmonic nanocomposite/poly acrylic acid-modified polyamide membranes for industrial wastewater treatment[J]. Separation and Purification Technology,2019,236:116257.doi.org/10.1016/j.seppur. [16] Lou W,Kane A,Wolbert D,et al.Study of a photocatalytic process for removal of antibiotics from wastewater in a falling film photoreactor: scavenger study and process intensification feasibility[J].Chemical Engineering and Processing:Process Intensification,2017,122:213-221. [17] Pak G,Salcedo D E,Lee H,et al.Comparison of antibiotic resistance removal efficiencies using ozone disinfection under different pH and suspended solids and humic substance concentrations[J].Environmental Science & Technology,2016,50(14):7590-7600. [18] Michael-Kordatou I,Andreou R,Iacovou M,et al.On the capacity of ozonation to remove antimicrobial compounds, resistant bacteria and toxicity from urban wastewater effluents[J].Journal of Hazardous Materials,2017,323: 414-425. [19] 周婧,支苏丽,宫祥静,等.三类抗生素在两种典型猪场废水处理工艺中的去除效果[J].农业环境科学学报,2019,38(2): 430-438. Zhou J,Zhi S L,Gong X J,et al.The removal effect of three classes of antibiotics in two typical swine wastewater teratment systems[J].Journal of Agro-Environment Science, 2019,38(2):430-438.(in Chinese) [20] 陈建发.三污泥法处理抗生素类制药废水[J].过程工程学报,2019,19(3):644-650. Chen J F.Treatment of antibiotic pharmaceutical wastewater by three sludge method[J].Chin. J. Process Eng.,2019,19(3): 644-650.(in Chinese) [21] 洛根[美].微生物燃料电池[M].冯玉杰,王鑫译.北京:化学工业出版社,2009:1-167. Bruce E L.Microbial fuel cell[M].Translated by Feng Y J,Wang X.Beijing:Chemical Industry Publisher,2009:1-167. (in Chinese) [22] Feng Y,He W,Liu J,et al.A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment[J].Bioresour Technol,2014,156:132-138. [23] Choi J,Ahn Y.Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater[J].J Environ Manage,2013,130:146-152. [24] Sciarria T P,Tenca A,D'Epifanio A,et al.Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell[J].Bioresour Technol,2013,147:246-253. [25] Du F Z,Li Z L,Yang S Q,et al.Electricity generation directly using human feces wastewater for life support system[J]. Acta Astronautica,2011,68(9-10):1537-1547. [26] Santoro C,Ieropoulos I,Greenman J,et al.Power generation and contaminant removal in single chamber microbial fuel cells(Scmfcs) treating human urine[J].International Journal of Hydrogen Energy,2013,38(26):11543-11551. [27] Zhang B,Zhao H,Zhou S,et al.A novel uasb-mfc-baf integrated system for high strength molasses wastewater treatment and bioelectricity generation[J].Bioresour Technol, 2009,100(23):5687-5693. [28] Lu N,Zhou S G,Zhuang L,et al.Electricity generation from starch processing wastewater using microbial fuel cell technology[J].Biochemical Engineering Journal,2009,43(3): 246-251. [29] Koroglu E O,Ozkaya B,Denktas C,et al.Electricity generating capacity and performance deterioration of a microbial fuel cell fed with beer brewery wastewater[J].J Biosci Bioeng,2014,118(6):672-678. [30] Wen Q,Wu Y,Cao D,et al.Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater[J].Bioresour Technol,2009,100(18): 4171-4175. [31] Cheng X,He L,Lu H,et al.Optimal water resources management and system benefit for the marcellus shale-gas reservoir in pennsylvania and west virginia[J].Journal of Hydrology,2016,540:412-422. [32] Sathian S,Rajasimman M,Radha G,et al.Performance of Sbr for the treatment of textile sye wastewater: optimization and kinetic studies[J].Alexandria Engineering Journal,2014, 53(2):417-426. [33] Nunes L J R,Matias J C O,Catal?o J P S.Analysis of the use of biomass as an energy alternative for?the?portuguese textile dyeing industry[J].Energy,2015,84:503-508. [34] Karthikeyan S,Boopathy R,Sekaran G.In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater[J].J Colloid Interface Sci,2015,448:163-174. [35] Li Z,Yao L,Kong L,et al.Electricity generation using a baffled microbial fuel cell convenient for stacking[J]. Bioresour Technol,2008,99(6):1650-1655. [36] Donovan C,Dewan A,Peng H,et al.Power management system for a 2.5w remote sensor powered by a sediment microbial fuel cell[J].Journal of Power Sources,2011, 196(3):1171-1177. [37] Imran M,Prakash O,Pushkar P,et al.Performance enhancement of benthic microbial fuel cell by cerium coated electrodes[J].Electrochimica Acta,2019,295:58-66. [38] Prakash O,Mungray A,Chongdar S,et al.Performance of polypyrrole coated metal oxide composite electrodes for benthic microbial fuel cell(BMFC)[J].Journal of Environmental Chemical Engineering,2020,8:102757.doi.org/10.1016/ j.jece. 2018.11.002 [39] Zhuang L,Zhou S.Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack[J].Electrochemistry Communications,2009,11(5):937- 940. [40] Liu S H,Lai C Y,Ye J W,et al.Increasing removal of benzene from groundwater using stacked tubular air-cathode microbial fuel cells[J].Journal of Cleaner Production,2018, 194:78-84. [41] Xie B,Liu B,Yi Y,et al.Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in anaerobic-anoxic-oxic wastewater treatment process[J].Bioresour Technol,2016,207:109-117. [42] Huang J,Yang P,Guo Y,et al.Electricity generation during wastewater treatment: an approach using an afb-mfc for alcohol distillery wastewater[J].Desalination,2011,276(1-3): 373-378. [43] Zhao Y,Collum S,Phelan M,et al.Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials[J].Chemical Engineering Journal,2013,229:364-370. [44] Liu S,Song H,Wei S,et al.Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland - microbial fuel cell systems[J].Bioresour Technol,2014,166:575-583. [45] 李骅,杨小丽,宋海亮,等.微生物燃料电池型人工湿地去除抗生素的效能研究[J].东南大学学报(自然科学版), 2017,47(2):410-415. Li H,Yang X L,Song H L,et al.Study on antibiotics removal by microbial fuel cell coupled constructed wetland[J]. Journal of Southeast University( Natural Science Edition), 2017,47(2):410-415.(in Chinese) [46] Ren L,Ahn Y,Logan B E.A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (Mfc-Afmbr) system for effective domestic wastewater treatment[J]. Environ Sci Technol,2014,48(7):4199-4206. [47] Ge Z,He Z.Effects of draw solutions and membrane conditions on electricity generation and water flux in osmotic microbial fuel cells[J].Bioresour Technol,2012, 109:70-76. [48] Li N,Liu L,Yang F.Power generation enhanced by a polyaniline–phytic acid modified filter electrode integrating microbial fuel cell with membrane bioreactor[J].Separation and Purification Technology,2014,132:213-217. [49] He L,Du P,Chen Y,et al.Advances in microbial fuel cells for wastewater treatment[J].Renewable and Sustainable Energy Reviews,2017,71:388-403. [50] 刘晖.微生物燃料电池法处理难降解污染物及其产电性能的研究[D].长沙:湖南大学,2011:1-74. Liu H.Electricity generation by degradation of resistant biodegradation organic pollutants using a microbial fuel cell[D].Changsha:Hunan University,2011:1-74.(in Chinese) [51] 王俊杰.微生物燃料电池去除有机氯的应用基础研究[D].北京:中国科学院过程工程研究所,2019:1-96. Wang J J.Basic research on application of microbial fuel cell to remove organic chlorine[D].Beijing:Institute of Process Engineering,Chinese Academy of Sciences,2019: 1-96.(in Chinese) [52] 孙茜.微生物燃料电池处理难降解有毒废水实验研究[D].哈尔滨:哈尔滨工程大学,2010:1-92. Sun Q.Study on the refractory and toxic wastewater with microbial fuel cell[D].Harbin:Harbin Engineering Universtiy, 2010:1-92.(in Chinese) [53] 樊芳.含酚废水中有毒物质在微生物燃料电池中的迁移机理[D].青岛:青岛科技大学,2018:1-77. Fan F.Transfer of toxic substances in phenolic wastewater in microbial fuel cell[D].Qingdao:Qingdao University of Science & Technology,2018:1-77.(in Chinese) [54] 刘新民.厌氧流化床微生物燃料电池处理含酚废水性能和机理研究[D].北京:中国矿业大学,2018:1-140. Liu X M.Study on the properties and mechanism of phenolic wastewatertreatment in anaerobic fluidized bed microbial fuel cell[D].Beijing:China University of Mining and Technology,2018:1-140.(in Chinese) [55] 杨永刚.微生物燃料电池的电子传递方式及其在典型有机污染物降解中的应用研究[D].广州:华南理工大学,2011: 1-136. Yang Y G.Microbial fuel cells electron transfer pathway and its availability in typical organic pollutants degradation[D]. Guangzhou:South China University of Technology,2011: 1-136.(in Chinese) [56] 方舟.人工湿地型微生物燃料电池同步降解偶氮染料与产电的特性及机理[D].南京:东南大学,2017:1-152. Fang Z.The characteristics and mechanisms of simultaneous azo dye degradation and bioelectrictiy generation using a constructed wetland-microbial fuel cell[D].Nanjing: Southeast University,2017:1-152.(in Chinese) [57] 刘慎坦.湿地型燃料电池耦合生物膜电极法对难降解有机物的去除特性[D].南京:东南大学,2015:1-235. Liu S T.The removal characteristics of refractory organics using the method of coupling bio-film electrode reactor and constructed wetland-microbial fuel cell[D].Nanjing: Southeast University,2015:1-235.(in Chinese) [58] 李阳.微生物电化学耦合系统强化处理偶氮染料废水的研究[D].合肥:中国科学技术大学,2016:1-78. Li Y.Microbial electrochemical coupled system for enhancement of azo dye decolorization from wastewater[D]. Hefei:University of Science and Technology of China, 2016:1-78.(in Chinese) [59] Miran W,Jang J,Nawaz M,et al.Biodegradation of the sulfonamide antibiotic sulfamethoxazole by sulfamethoxazole acclimatized cultures in microbial fuel cells[J].Sci Total Environ,2018,627:1058-1065. [60] Wang L,Liu Y,Ma J,et al.Rapid degradation of sulphamethoxazole and the further transformation of 3-amino-5-methylisoxazole in a microbial fuel cell[J].Water Res,2016,88:322-328. [61] Wang L,You L,Zhang J,et al.Biodegradation of sulfadiazine in microbial fuel cells: reaction mechanism, biotoxicity removal and the correlation with reactor microbes[J].J Hazard Mater,2018,360:402-411. [62] Wang J,Zhou B,Ge R,et al.Degradation characterization and pathway analysis of chlortetracycline and oxytetracycline in a microbial fuel cell[J].Rsc Advances,2018,8(50): 28613-28624. [63] Yan W,Wang S,Ding R,et al.Long-term operation of electroactive biofilms for enhanced ciprofloxacin removal capacity and anti-shock capabilities[J].Bioresour Technol, 2019,275:192-199. [64] Zhang Q,Zhang Y,Li D.Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community[J]. Bioresour Technol,2017,229:104-110. [65] 刘斌,尚均顶,王许云.微生物燃料电池构型研究进展[J].当代化工,2018,47(10):2173-2177. Liu B,Shang J D,Wang X Y.Research progress in configuration of microbial fuel cells[J].Contemporary Chemical Industry,2018,47(10):2173-2177.(in Chinese) [66] Zhang E,Yu Q,Zhai W,et al.High tolerance of and removal of cefazolin sodium in single-chamber microbial fuel cells operation[J].Bioresour Technol,2018,249:76-81. [67] Wang Y,Wu J,Yang S,et al.Electrode modification and optimization in air-cathode single-chamber microbial fuel cells[J].Int J Environ Res Public Health,2018,15(7):1-16. [68] Zhou Y,Zhu N,Guo W,et al.Simultaneous electricity production and antibiotics removal by microbial fuel cells[J].J Environ Manage,2018,217:565-572. [69] Xue W,Li F,Zhou Q.Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell[J].Bioresour Technol,2019,289:121632.doi:10.1016/ j.biortech.2019.121632 [70] Kiely P D,Rader G,Regan J M,et al.Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts[J].Bioresour Technol,2011,102(1):361-366. [71] Cheng D N,Ngo H H,Guo W S,et al.Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater:a review[J].Bioresource Technology,2019,299:122654. doi: 10.1016/j.biortech.2019.122654 [72] Zhang S,Song H L,Cao X,et al.Inhibition of methanogens decreased sulfadiazine removal and increased antibiotic resistance gene development in microbial fuel cells[J].Bioresour Technol,2019,281:188-194. [73] Yan W,Guo Y,Xiao Y,et al.The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing[J]. Water Research,2018,142:105-114. [74] Kong Y,Li W,Wang Z,et al.Electrosorption behavior of copper ions with poly(M-phenylenediamine) paper electrode[J].Electrochemistry Communications,2013,26: 59-62. [75] Ania C O,Beguin F.Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions[J].Water Res,2007,41(15):3372-3380. [76] Yang W,Han H,Zhou M,et al.Simultaneous electricity generation and tetracycline removal in continuous flow electrosorption driven by microbial fuel cells[J].Rsc Advances,2015,5(61):49513-49520. [77] Zhao W J,Qu J,Zhou Y J,et al.Continuous flow electrosorption-microbial fuel cell system for efficient removal of oxytetracycline without external electrical supply[J].Bioresour Technol,2019,290:121751.doi: 10.1016/ j.biortech.2019.121751 [78] 杨可昀.人工湿地耦合微生物燃料电池产电及去除抗生素的效能研究[D].南京:东南大学,2016:1-65. Yang K Y.Integration of constructed wetland with microbial fuel cell for power production and removal of antibiotics[D].Nanjing:Southeast University,2016:1-65.(in Chinese) [79] 汪龙眠,谢雪歌,张毅敏.人工湿地-微生物燃料电池耦合技术发展现状[A].创新驱动助推绿色发展[C].厦门:中囯环境科学学会学术年会,2017:3150-3154. Wang L M,Xie X G,Zhang Y M.Development status of coupling technology between constructed wetland and microbial fuel cell[A].Innovation driven green development[C].Xiamen:Proceedings of the Annual Meeting of Chinese Society of Environmental Sciences, 2017:3150-3154.(in Chinese) [80] Li H,Song H L,Yang X L,et al.A continuous flow Mfc-Cw coupled with a biofilm electrode reactor to simultaneously attenuate sulfamethoxazole and its corresponding resistance genes[J].Sci Total Environ,2018,637/638:295-305. [81] Zhang S,Song H L,Yang X L,et al.Fate of tetracycline and sulfamethoxazole and their corresponding resistance genes in microbial fuel cell coupled constructed wetlands[J].Rsc Advances,2016,6(98):95999-96005. [82] Zhang S,Song H L,Yang X L,et al.A system composed of a biofilm electrode reactor and a microbial fuel cell-constructed wetland exhibited efficient sulfamethoxazole removal but induced sul genes[J]. Bioresour Technol,2018,256:224-231. [83] Song H L,Li H,Zhang S,et al.Fate of sulfadiazine and its corresponding resistance genes in up-flow microbial fuel cell coupled constructed wetlands:effects of circuit operation mode and hydraulic retention time[J].Chemical Engineering Journal,2018,350:920-929. [84] Zhang S,Song H L,Yang X L,et al.Dynamics of antibiotic resistance genes in microbial fuel cell-coupled constructed wetlands treating antibiotic-polluted water[J].Chemosphere, 2017,178:548-555. [85] Yan W,Xiao Y,Yan W,et al.The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes:a review[J].Chemical Engineering Journal,2019,358: 1421-1437. [86] Huang J,Yang P,Guo Y,et al.Electricity generation during wastewater treatment: an approach using an AFB-MFC for alcohol distillery wastewater[J].Desalination,2011,276(1-3): 373-378. [87] Moon H,Chang I S,Kang K H,et al.Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand(BOD) sensor[J]. Biotechnology Letters,2004,26(22):1717-1721. [88] Moon H,Chang I S,Jang J K,et al.On-line monitoring of low biochemical oxygen demand through continuous operation of a mediator-less microbial fuel cell[J].Journal of Microbiology and Biotechnology,2005,15(1):192-196. [89] Hsieh M C,Cheng C Y,Liu M H,et al.Effects of operating parameters on measurements of biochemical oxygen demand using a mediatorless microbial fuel cell biosensor[J].Sensors,2016,16(1):35. [90] Ayyaru S,Dharmalingam S.Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor[J].Analytica Chimica Acta,2014,818:15-22. [91] Modin O,Wilén B M.A novel bioelectrochemical BOD sensor operating with voltage input[J].Water Research, 2012,46(18):6113-6120. [92] Yamashita T,Ookawa N,Ishida M,et al.A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment[J].Scientific Reports, 2016,6(1):1-9. [93] Khan A,Salama E S,Chen Z,et al.A novel biosensor for zinc detection based on microbial fuel cell system[J].Biosensors and Bioelectronics,2020,147:111763. [94] Adekunle A,Raghavan V,Tartakovsky B.On-line monitoring of heavy metals-related toxicity with a microbial fuel cell biosensor[J].Biosensors and Bioelectronics,2019,132: 382-390.. [95] Chen Z,Niu Y,Zhao S,et al.A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell[J].Biosensors and Bioelectronics,2016,85:860-868. [96] Yi Y,Xie B,Zhao T,et al.Effect of external resistance on the sensitivity of microbial fuel cell biosensor for detection of different types of pollutants[J].Bioelectrochemistry,2019, 125:71-78. [97] Zeng L,Li X,Shi Y,et al.Fepo4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin[J].Biosens Bioelectron,2017,91:367-373. [98] Zhou T,Han H,Liu P,et al.Microbial fuels cell-based biosensor for toxicity detection:a review[J].Sensors (Basel), 2017,17(10): 1-21. [99] Do M H,Ngo H H,Guo W,et al.Microbial fuel cell-based biosensor for online monitoring wastewater quality:a critical review[J].Science of the Total Environment,2019: 135612. [100] Kim M,Sik Hyun M,Gadd G M,et al.A novel biomonitoring system using microbial fuel cells[J].J Environ Monit,2007,9(12):1323-1328. [101] Stein N E,Hamelers H V M,Buisman C N J.The effect of different control mechanisms on the sensitivity and recovery time of a microbial fuel cell based biosensor[J]. Sensors and Actuators B:Chemical,2012,171-172:816-821. [102] Di Lorenzo M,Thomson A R,Schneider K,et al.A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality[J].Biosens Bioelectron,2014, 62:182-188. [103] Xu Z,Liu B,Dong Q,et al.Flat microliter membrane-based microbial fuel cell as "on-line sticker sensor" for self-supported in situ monitoring of wastewater shocks[J]. Bioresour Technol,2015,197:244-251. [104] Wang X,Gao N,Zhou Q.Concentration responses of toxicity sensor with shewanella oneidensis Mr-1 growing in bioelectrochemical systems[J].Biosens Bioelectron,2013, 43:264-267. [105] Catal T,Yavaser S,Enisoglu-Atalay V,et al.Monitoring of neomycin sulfate antibiotic in microbial fuel cells[J]. Bioresour Technol,2018,268:116-120. [106] Schneider G,Czeller M,Rostas V,et al.Microbial fuel cell-based diagnostic platform to reveal antibacterial effect of beta-lactam antibiotics[J].Enzyme Microb Technol,2015, 73-74:59-64. |
[1] | 黄维,吴炫柯,刘永裕,何燕,安佳君. 气候变化对广西双季稻种植布局的影响[J]. 中国农业气象, 2020, 41(09): 539-551. |
[2] | 徐超,杨再强,王明田,韩玮,韦婷婷. 高温环境下空气湿度对花期番茄生长及根系分泌的调节作用[J]. 中国农业气象, 2020, 41(09): 552-563. |
[3] | 陈仁伟,张晓煜,杨豫,王静,张亚红,胡宏远,丁永平. 贺兰山东麓砾石葡萄园赤霞珠最佳采收期的确定[J]. 中国农业气象, 2020, 41(09): 564-574. |
[4] | 玉院和,王金亮. TRMM 3B43降水数据在云南地区的降尺度适用性评价[J]. 中国农业气象, 2020, 41(09): 575-586. |
[5] | 蔡大鑫,刘少军,陈汇林,田光辉. 基于植被长势的香蕉区域估产信息扩散模型[J]. 中国农业气象, 2020, 41(09): 587-596. |
[6] | 石涛,杨太明,黄勇,李翔,刘琪,杨元建. 无人机多光谱遥感监测水稻高温胁迫的关键技术[J]. 中国农业气象, 2020, 41(09): 597-604. |
[7] | 韩丽娟,赵晓凤,张蕾. 2020年夏收粮油作物生育期气象条件及其影响分析[J]. 中国农业气象, 2020, 41(09): 605-607. |
[8] | 李路瑶,李佳彬,冯烁,宋婷婷,张燕荣,朱昌雄,耿兵. 微生物异位发酵床处理蛋鸡养殖废弃物的效果[J]. 中国农业气象, 2020, 41(08): 473-482. |
[9] | 常佳悦,李灵芝,李海平,马太光,张国香,高清兰,梁运香,李发远,王艳芳. 腐植酸引发对低温胁迫西葫芦种子萌发的影响[J]. 中国农业气象, 2020, 41(08): 483-494. |
[10] | 周小云,刘梦丽,李进,张军高,梁晶,杜鹏程,王莉,翟梦华,甘恩祥,高文伟,雷斌. 萎锈灵包衣对低温胁迫下棉种萌发特性的影响[J]. 中国农业气象, 2020, 41(08): 495-505. |
[11] | 栾青, 郭建平, 马雅丽, 张丽敏, 王婧瑄. 玉米叶面积指数估算通用模型[J]. 中国农业气象, 2020, 41(08): 506-519. |
[12] | 肖秀珠,刘佳明,孙朝锋,陈家金. 福建省蓝莓种植气候适宜性区划[J]. 中国农业气象, 2020, 41(08): 520-528. |
[13] | 姜少杰,宋海清,李云鹏,潘学标,姜会飞. 内蒙古地区FY-3B/3C微波遥感土壤水分数据产品的融合与评估[J]. 中国农业气象, 2020, 41(08): 529-538. |
[14] | 卢闯,胡海棠,淮贺举,程成,田宇杰,李存军. 夏玉米-冬小麦轮作期土壤呼吸的温度敏感性分析[J]. 中国农业气象, 2020, 41(07): 403-412. |
[15] | 董晓星,黄松,余路明,李胜利. 大跨度外保温型塑料大棚小气候环境测试[J]. 中国农业气象, 2020, 41(07): 413-422. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||