中国农业气象 ›› 2024, Vol. 45 ›› Issue (11): 1276-1289.doi: 10.3969/j.issn.1000-6362.2024.11.003

• 农业生态环境栏目 • 上一篇    下一篇

基于CDF匹配校正的珠江流域多源微波土壤水分产品融合

何全军,张月维,石艳军,胡鑫   

  1. 广州气象卫星地面站/广东省气象卫星遥感中心,广州 510640
  • 收稿日期:2023-12-21 出版日期:2024-11-20 发布日期:2024-11-12
  • 作者简介:何全军,高级工程师,主要从事卫星遥感应用与产品开发研究,E-mail:hequanjunsx@163.com
  • 基金资助:
    泛珠三角科技创新开放基金(FZSJ202112);广东省气象局科学技术研究项目(GRMC2020M04)

Multi-source Microwave Soil Moisture Product Fusion Based on CDF Matching Correction in the Pearl River Basin

HE Quan-jun, ZHANG Yue-wei, SHI Yan-jun, HU Xin   

  1. Guangzhou Meteorological Satellite Ground Station/Guangdong Meteorological Satellite Remote Sensing Center, Guangzhou510640, China
  • Received:2023-12-21 Online:2024-11-20 Published:2024-11-12

摘要:

单颗卫星反演的土壤水分产品存在时空覆盖不连续的问题。为获得珠江流域时空连续的卫星遥感土壤水分数据,以SMAP卫星的体积土壤水分(VSM)产品为参考,基于累积分布函数(CDF)法匹配校正AMSR2、SMOS和MWRI卫星的遥感反演VSM产品,采用最优插值法融合上述4VSM产品,生成珠江流域时空连续的10km分辨率逐日VSM融合产品,利用地面站观测数据以及再分析数据对VSM融合产品进行检验。结果表明:(14种卫星反演的土壤水分产品有明显测量范围差异,测量范围从高到低依次是SMOS、AMSR2、SMAP和MWRI,最大测量值分别为1.00、0.99、0.70以及0.50m3·m−3,不适合同时用于同一地区的土壤水分监测。(2)多源卫星VSM产品间存在偏差。与SMAP的VSM产品相比,SMOS的VSM产品较其存在负偏差,二者无偏均方根误差最小且相关系数最高;AMSR2的VSM产品与其存在正偏差且相关性较低;MWRI的VSM产品与其存在负偏差且相关性最小。(3)SMAPVSM产品精度和稳定性优于AMSR2、SMOS和MWRIVSM产品,与观测数据和再分析数据时间序列相关性显著优于后3者。(4)经过CDF匹配偏差校正,增强了AMSR2、SMOS和MWRIVSM产品与SMAPVSM产品间一致性。多源数据融合可修正单颗卫星产品的误差,提高与观测数据和再分析数据间的相关性,弥补遥感观测数据的时空连续性。

关键词: 珠江流域, 微波遥感, 土壤水分, 偏差校正, 数据融合

Abstract:

The soil moisture product retrieved by single satellite has the disadvantage of discontinuous spatiotemporal coverage. In order to obtain spatiotemporal continuous satellite remote sensing soil moisture data in the Pearl river basin, with the volumetric soil moisture (VSM) product of soil moisture active/passive satellite (SMAP) as a reference, the cumulative distribution function (CDF) method was used to perform the matching bias correction for the VSM products from advanced microwave scanning radiometer 2 (AMSR2), soil moisture and ocean salinity (SMOS) and microwave radiation imager (MWRI), and the optimum interpolation method was used to fuse the data of these four VSM products to generate a spatiotemporal continuous daily fusion VSM product with a resolution of 10km in the Pearl river basin. The station observation data and reanalysis data were adopted to evaluate the fused VSM products. The results indicated that, (1) there were significant differences in the measurement range of soil moisture products retrieved from different satellites. The measurement ranges from high to low were SMOS, AMSR2, SMAP and MWRI, with maximum measurement values of 1.00, 0.99, 0.70 and 0.50m3·m−3, respectively. They were not suitable for simultaneous use in soil moisture monitoring. (2) There were deviations between multi-source satellite VSM products. SMOS VSM product had a negative bias compared to SMAP VSM product, with the smallest unbiased root mean square error and the highest correlation coefficient. AMSR2 VSM product had a positive bias compared to SMAP VSM product, and the correlation between these two satellite VSM products was relatively low. MWRI VSM product had a negative bias and the smallest correlation compared to SMAP VSM product. (3) The accuracy and stability of SMAP VSM product were better than those of AMSR2, SMOS and MWRI VSM products. The time series correlation between SMAP VSM product and in-situ data and reanalysis data was obviously better than the latter three satellite VSM products. (4) After CDF matching bias correction, the consistency between AMSR2, SMOS and MWRI VSM products and SMAP VSM product had been enhanced. Multi-source data fusion can correct the error of single satellite product, improve the correlations with in-situ data and reanalysis data, and compensate the spatiotemporal coverage continuity of remote sensing data.

Key words: Pearl river basin, Microwave remote sensing, Soil moisture, Bias correction, Data fusion