中国农业气象 ›› 2026, Vol. 47 ›› Issue (2): 249-263.doi: 10.3969/j.issn.1000-6362.2026.02.008

• 农业生物气象栏目 • 上一篇    下一篇

基于APSIM模型优化辽西地区玉米与花生间作行比配置

季雅菲,孙天然,张悦,彭普,杜鸿君,郭雅娇雪,张晋瑜,孙占祥,冯晨,张哲,董智,张旭,张立祯   

  1. 1.靖江市气象局,靖江 214500;2.中国农业大学资源与环境学院,北京 100193;3.中国气象局气象干部培训学院新疆分院,乌鲁木齐 830013;4.辽宁省农业科学院耕作栽培研究所,沈阳 110161;5.国家农业环境阜新观测试验站,阜新 123100;6.阜新市气象局,阜新 123100
  • 收稿日期:2024-10-31 出版日期:2026-02-20 发布日期:2026-02-10
  • 作者简介:季雅菲,E-mail:dfffj1485@163.com
  • 基金资助:
    国家自然科学基金区域创新发展联合基金(U21A20217);中国博士后科学基金项目(2023M731482);辽宁“百千万人才工程”项目(2021921035)

Optimizing Row Ratio Configuration of Intercropping Maize and Peanut in Western Liaoning Based on APSIM Model

JI Ya-fei, SUN Tian-ran, ZHANG Yue, PENG Pu, DU Hong-jun, GUO Ya-jiao-xue, ZHANG Jin-yu, SUN Zhan-xiang, FENG Chen, ZHANG Zhe, DONG Zhi, ZHANG Xu, ZHANG Li-zhen   

  1. 1. Jingjiang Meteorological Bureau, Jingjiang 214500, China; 2. College of Agricultural Resources and Environmental Sciences, China Agricultural University, Beijing 100193; 3. Xinjiang Branch of China Meteorological Administration Training Centre, Urumqi 830013; 4. Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Science, Shenyang 110161; 5.National Agricultural Experimental Station for Agricultural Environment, Fuxin 123100; 6.Fuxin Meteorological Bureau, Fuxin 123100
  • Received:2024-10-31 Online:2026-02-20 Published:2026-02-10

摘要:

利用优化后的APSIM模型,基于1961−2020年辽宁阜新逐日气象资料,以单作玉米(SM)和单作花生(SP)为对照,设置玉米和花生的窄条带情景2:2(M2P2)、4:4(M4P4)、6:6(M6P6),中条带情景8:8(M8P8)、10:10(M10P10),以及宽条带情景12:12(M12P12)、14:14(M14P14)和16:16(M16P16),共8种玉米花生行比情景,比较分析气候变化下玉米花生不同行比配置对雨养产量、潜在产量、土地当量比、土壤水和有机碳含量的影响,以明确辽西地区玉米花生间作最佳行比配置,以期解决辽西地区玉米花生间作系统的可持续发展问题,为提升辽西地区粮作生产的经济和生态效益提供理论指导。结果表明:(1)雨养条件下,1961−2020年玉米花生间作系统中8种玉米花生行比情景下玉米产量呈降低趋势,从3469kg·hm−2降低至3418kg·hm−2,花生产量呈增高趋势,从746kg·hm−2增高至926kg·hm−2;充分灌溉条件下,1961−2020年玉米花生间作系统中,8种玉米花生行比情景玉米产量呈降低趋势,从4166kg·hm−2降至4156kg·hm−2,花生产量呈增高趋势,从751kg·hm−2增至1004kg·hm−2。与宽条带情景M16P16相比,窄条带情景M2P2在雨养和充分灌溉条件下玉米产量分别降低51kg·hm−210kg·hm−2,花生产量分别提高180kg·hm−2253kg·hm−2。(2)1961−2020年玉米花生间作系统8种行比情景下,间作玉米雨养和潜在偏土地当量比分别在0.560.62左右平稳波动,间作花生雨养偏土地当量比从0.29增至0.35,潜在偏土地当量比从0.25增至0.33,玉米和花生间作的土地当量比均<1.0。(3)1961−2020年玉米花生间作系统中,土壤有机碳含量从0.82%增至1.02%,呈不显著增加;土壤含水量呈降低趋势,从0.26mm·mm−1降至0.14mm·mm−1。1961−2020年玉米花生间作系统土壤含水量年际间呈降低趋势,土壤有机碳含量年际间呈极显著升高趋势(P<0.001)。综合产量、土地当量比和土壤含水量的表现,种植窄条带的玉米/花生间作(M2P2M4P4)能有效提高辽西地区土地利用效率,在全球变暖背景下具有一定的生产应用价值。

关键词: 行比, 间作, 玉米, 花生, APSIM模型

Abstract:

Using an optimized APSIM model and based on daily meteorological data from Fuxin, Liaoning province from 1961 to 2020, with sole maize (SM) and sole peanut (SP) as controls, eight maize−peanut row ratio configurations were established: narrow strip scenarios 2:2 (M2P2), 4:4 (M4P4), 6:6 (M6P6); medium strip scenarios 8:8 (M8P8), 10:10 (M10P10); and wide strip scenarios 12:12 (M12P12), 14:14 (M14P14) and 16:16 (M16P16). A comparative analysis was conducted to assess the effects of different maize−peanut row ratio configurations under climate change on rainfed yield, potential yield, land equivalent ratio, soil water content and soil organic carbon content. This study aimed to identify the optimal maize−peanut intercropping row ratio configuration in western Liaoning, thereby addressing the sustainable development of maize−peanut intercropping systems in the region and providing theoretical guidance for enhancing the economic and ecological benefits of grain production in western Liaoning. The results indicated that: (1) under rainfed conditions, maize yield in the maize−peanut intercropping system showed a decreasing trend across all 8 row ratio configurations from 1961 to 2020, declining from 3469kg·ha−1 to 3418kg·ha1, while peanut yield increased from 746kg·ha1 to 926kg·ha1. Under fully irrigated conditions, maize yield in the maize−peanut intercropping system decreased from 4166kg·ha1 to 4156kg·ha1, while peanut yield increased from 751kg·ha1 to 1004kg·ha1 across the eight maize−peanut row ratio configurations from 1961 to 2020. Compared to the wide−strip scenario M16P16, the narrow−strip scenario M2P2 maize yield reduced by 51kg·ha1 under rainfed conditions and by 10kg·ha1 under fully irrigated conditions, while peanut yield increased by 180kg·ha1 and 253kg·ha1, respectively. (2) Under eight row ratio configurations in the maize−peanut intercropping system from 1961 to 2020, the rain−fed and potential land equivalence ratios for intercropped maize fluctuated stably around 0.56 and 0.62, respectively. The rain−fed land equivalent ratio for intercropped peanuts increased from 0.29 to 0.35, while the potential land equivalent ratio increased from 0.25 to 0.33. Both maize and peanut land equivalent ratios in intercropping systems remained <1.0. (3) From 1961 to 2020, soil organic carbon content in maize−peanut intercropping systems increased from 0.82% to 1.02%. Soil moisture content decreased from 0.26mm·mm−1 to 0.14mm·mm1. From 1961 to 2020, soil moisture content in the maize−peanut intercropping system showed an interannual decreasing trend, while soil organic carbon content exhibited a significant interannual increasing trend (P<0.001). Based on the performance of total yield, land equivalent ratio, soil moisture content, narrow−strip intercropping of maize and peanuts (M2P2 and M4P4) could effectively enhance land productivity for the fragile ecosystems in western Liaoning province. This approach is economically and ecologically valuable under global warming conditions.

Key words: Row ratio, Intercropping, Maize, Peanut, APSIM model