中国农业气象 ›› 2021, Vol. 42 ›› Issue (01): 44-55.doi: 10.3969/j.issn.1000-6362.2021.01.005

• 农业生物气象栏目 • 上一篇    下一篇

高温胁迫下番茄临界氮模型的建立及氮素营养诊断

李佳佳,杨再强   

  1. 1.南京信息工程大学气象灾害预报预警与评估协同创新中心,南京 210044;2.江苏省农业气象重点实验室,南京 210044
  • 收稿日期:2020-08-27 出版日期:2021-01-20 发布日期:2021-01-17
  • 通讯作者: 杨再强,教授,研究方向为设施农业气象、特色农业气象、农业生物环境调控,E-mail:yzq@nuist.edu.cn E-mail:yzq@nuist.edu.cn
  • 作者简介:李佳佳,E-mail:572688568@qq.com
  • 基金资助:
    国家自然科学基金面上项目(41775104;41975142);国家重点研发计划(2019YFD1002202)

Establishment of Critical Nitrogen Model and Nitrogen Nutrition Diagnosis of Tomato under High Temperature Stress

LI Jia-jia, YANG Zai-qian   

  1. 1.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2.Jiangsu Provincial Key Laboratory of Agrometeorology, Nanjing 210044
  • Received:2020-08-27 Online:2021-01-20 Published:2021-01-17

摘要: 临界氮浓度(Nc)是在一定生长时期内获得最大生物量时的最小氮浓度,对实时了解作物氮素营养状况,提高作物品质与产量,避免肥料浪费具有重要意义。为了研究高温胁迫下设施番茄植株氮素运营规律,确定番茄临界氮浓度,以番茄品种“金粉一号”(Jinfen 1)为试材,在南京信息工程大学Venlo型温室开展高温和施氮量双因素全面试验。设置昼温/夜温4个温度水平,即T1(25℃/15℃,CK)、T2(30℃/20℃)、T3(35℃/25℃)和T4(40℃/30℃),5个施氮量水平,即不施用氮肥N1、0.5倍推荐施肥N2(1.3g·株−1)、0.75倍推荐施肥N3(1.95g·株−1)、正常推荐施肥N4(2.6g·株−1,CK)、1.25倍推荐施肥N5(3.75g·株−1)。在盆栽番茄植株开始吸收肥料后于不同温度处理的气候箱内进行高温试验,高温处理7d后,移至常温下Venlo型试验温室内继续培养,第2日开始,通过定期破坏性取样,系统测定植株生物量和各器官含氮量。结果表明:各高温氮素处理下番茄植株的干物质量(DM)均随着生育期的发展而逐渐增大,设施番茄临界氮浓度与地上部生物量之间符合幂指数关系,即Nc=a·DM−b,其中,T1:Nc= 4.167DM−0.252;T2:Nc= 4.689DM−0.375;T3:Nc= 3.287DM−0.353;T4:Nc=3.812DM−0.403。随着高温胁迫程度加重,番茄临界氮浓度呈现先增大后减小的趋势,低氮处理下的干物质积累量高于高氮处理;随着施氮量的增加,各温度处理下的植株营养指数(NNI)增大,且随着处理时间延长植株营养指数大体呈现降低趋势。

关键词: 番茄, 高温, 临界氮模型, 氮素营养指数, 氮素营养诊断

Abstract: The critical nitrogen concentration (Nc) is the minimum nitrogen concentration when the maximum biomass is obtained in a certain growth period. It is of great significance for real-time understanding of crop nitrogen nutrition status, improving crop quality and yield, and avoiding fertilizer waste. In order to study the nitrogen management rule of greenhouse tomato under high temperature stress and determine the critical nitrogen concentration (Nc), a comprehensive experiment of high temperature and nitrogen application rate was conducted in the Venlo greenhouse of Nanjing University of Information Technology. Four temperature levels (T1 (25℃/15℃, CK), T2 (30℃ /20℃), T3 (35℃ /25℃) and T4 (40℃ /30℃) were set up, namely, no nitrogen N1, 0.5 times recommended fertilization N2 (1.3g·plant−1), 0.75 times recommended fertilization N3 (1.95g·plant−1), normal recommended fertilization N4 (2.6g·plant−1, CK), 1.25 times recommended fertilization N5 (3.75g·plant−1). After the potted tomato plants began to absorb fertilizer, the high temperature test was carried out in the climate box with different temperature treatment. After 7 days of high temperature treatment, the tomato plants were moved to the Venlo type experimental greenhouse at normal temperature for continuous cultivation. From the second day, the plant biomass and nitrogen content of each organ were systematically measured by periodic destructive sampling. The results showed that the dry matter mass (DM) of tomato plants increased with the development of growth period under different high temperature nitrogen treatments, and the relationship between critical nitrogen concentration and aboveground biomass of greenhouse tomato was in accordance with power index:Nc=a·DM−b, among them, T1:Nc= 4.167DM−0.252;T2:Nc= 4.689DM−0.375;T3:Nc= 3.287DM−0.353;T4:Nc=3.812DM−0.403. With the aggravation of high temperature stress, the critical nitrogen concentration of tomato first increased and then decreased, the dry matter accumulation of low nitrogen treatment was higher than that of high nitrogen treatment; with the increase of nitrogen application rate, the plant nutrition index (NNI) under each temperature treatment increased, and with the extension of treatment time, the plant nutrient index showed a downward trend.

Key words: Tomato, High temperature, Critical nitrogen model, Nitrogen nutrition index, Nutrition diagnosis