中国农业气象 ›› 2023, Vol. 44 ›› Issue (11): 1057-1071.doi: 10.3969/j.issn.1000-6362.2023.11.007

• 农业气象信息技术 栏目 • 上一篇    

机器学习算法在高光谱感知作物信息中的应用及展望

赵金龙,张学艺,李阳   

  1. 中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室/宁夏气象防灾减灾重点实验室/宁夏回族自治区气象科学研究所,银川 750002
  • 收稿日期:2022-12-08 出版日期:2023-11-20 发布日期:2023-11-15
  • 通讯作者: 张学艺,正高级工程师,主要从事农业气象与高光谱遥感研究。 E-mail:49793811@qq.com
  • 作者简介:赵金龙,E-mail:zjl891229@163.com
  • 基金资助:
    宁夏自然科学基金项目(2023AAC03798);中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室项目(CAMF-202305)

Hyperspectral Remote Sensing of Crop Information Based on Machine Learning Algorithm: State of the Art and Beyond

ZHAO Jin-long, ZHANG Xue-yi, LI Yang   

  1. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, CMA/ Ningxia Key Lab of Meteorological Disaster Prevention and Reduction/ Ningxia Institute of Meteorological Sciences, Yinchuan 750002, China
  • Received:2022-12-08 Online:2023-11-20 Published:2023-11-15

摘要: 机器学习作为一种统计学与计算机科学相结合的新兴技术,近年来在作物信息获取任务中得到广泛应用。传统的作物信息获取方式主要依靠化学检测法,测定过程耗时、耗力。基于机器学习算法和高光谱遥感技术能够通过无损的方式,快速感知作物外观及内部理化参数,具有明显的应用优势和发展前景。本文对国内外作物信息高光谱遥感相关研究进行系统性梳理。总结了不同机器学习算法在高光谱感知作物信息中的应用及优缺点,归纳了机器学习算法建模的不确定性,指出高光谱感知作物信息的未来发展趋势为,通过多源遥感协同观测实现作物信息获取方式互补,发展高光谱遥感与作物模型同化技术、高光谱遥感与人工智能深度融合技术,从而实现面向作物全生育期的关键信息智能化获取与决策。

关键词: 机器学习, 深度学习, 偏最小二乘法, 农作物, 高光谱遥感

Abstract: Machine learning, as a new technique combining statistics and computer science, has been widely used in crop information acquisition tasks in recent years. Traditional methods for obtaining crop information mainly rely on chemical detection methods, which is time-consuming and labor-intensive. Based on machine learning algorithms and hyperspectral remote sensing techniques, crop appearance and internal physical and chemical parameters can be quickly sensed in a non-destructive way, which has obvious application advantages and development prospects. First, the researches related to the hyperspectral remote sensing of crop information were systematically reviewed in this paper. Second, the application, advantages and disadvantages and uncertainties of different machine learning algorithms in hyperspectral sensing crop information were summarized. Finally, it was pointed out that the future development trends of hyperspectral sensing crop information were as follows: (1) complementary crop information acquisition methods could be realized through multi-source remote sensing collaborative observations. (2) The assimilation technologies of hyperspectral remote sensing and crop model as well as the deep integration technologies of hyperspectral remote sensing and artificial intelligence could be developed. (3) The intelligent acquisition of key information oriented to the whole growth period of crops and decision-making could be realized.

Key words: Machine learning, Deep learning, Partial least squares, Crops, Hyperspectral remote sensing