中国农业气象 ›› 2025, Vol. 46 ›› Issue (12): 1792-1803.doi: 10.3969/j.issn.1000-6362.2025.12.010

• 农业生物气象栏目 • 上一篇    下一篇

冬前气象条件对南昌县二化螟越冬基数的影响

李洁,冯敏玉,刘方义,吴风雨,叶清   

  1. 1.南昌市气象局,南昌 330000;2.南昌县农业技术推广中心,南昌 330200;3.江西农业大学,南昌 330045
  • 收稿日期:2024-12-24 出版日期:2025-12-20 发布日期:2025-12-16
  • 作者简介:李洁,E-mail:leecan66@163.com
  • 基金资助:
    南昌市农业气象重点实验室开放研究基金项目(2022NNZS203)

Pre-winter Meteorological Conditions Impact on Overwintering Population of Chilo suppressalis in Nanchang County

LI Jie, FENG Min-yu, LIU Fang-yi, WU Feng-yu, YE Qing   

  1. 1. Nanchang Meteorological Bureau, Nanchang 330000, China; 2. Nanchang County Agricultural Technology Promotion Center, Nanchang 330200; 3. Jiangxi Agricultural University, Nanchang 330045
  • Received:2024-12-24 Online:2025-12-20 Published:2025-12-16

摘要:

二化螟(Chilo suppressalis)是中国水稻生产的主要防治对象,其越冬基数直接决定翌年二化螟的发生强度。本研究基于20042022年江西省南昌县二化螟越冬基数大田调查数据及同期气象资料,以冬前气象条件为切入点,分析二化螟越冬基数变化趋势与气象条件的相关关系,筛选关键气象因子,分别构建平均越冬基数和最高越冬基数多元线性回归模型,并利用标准化回归系数(β)评估各气象因子作用效果,以期探明冬前气象条件对二化螟的影响,为气象变化条件下病虫害的动态监测提供参考。结果表明:120042013年南昌县二化螟越冬基数呈下降趋势;2014年后越冬基数急剧上升P<0.01,平均越冬基数突破30.00×104条·hm2,最高越冬基数稳定于130.00×104条·hm2以上。20152022年南昌县二化螟发生量维持5重度发生水平。(2)影响二化螟平均越冬基数的关键气象因子为当年10月中旬平均气温11月中旬最低气温、11月下旬12月上旬平均相对湿度,相关系数绝对值均高于0.40P<0.05);影响二化螟最高越冬基数的关键气象因子为当年10月中旬最低气温、11月中旬最低气温和11照时数,相关系数绝对值均高于0.40P<0.05)。(3)基于上述关键气象因子分别建立二化螟平均基数与最高基数的多元线性回归模型,模型均对训练集数据拟合较好(平均基数:R2=0.55P<0.05;最高基数:R2=0.56P<0.01),但泛化能力不稳定。模型标准化回归系数(β)分析表明,影响平均越冬基数的最主要冬前气象因子为10月中旬平均气温(β=0.62),呈显著负相关;影响最高越冬基数的主要冬前气象因子为10月中旬最低气温(β=0.40)和11月中旬最低气温(β=0.39),前者呈负相关,后者呈正相关。即冬前10月中旬升温可抑制二化螟越冬基数,11月气温升高则有利于其种群扩张。本研究明确了南昌县冬前气象条件对二化螟越冬基数的阶段性和综合性影响,揭示了冬前气温在二化螟虫源控制中的关键作用,可为气候条件变化下当地病虫害动态监测与防控策略制定提供参考。

关键词: 二化螟, 越冬期, 虫源基数, 气象因子, 多元线性回归

Abstract:

The striped stem borer (Chilo suppressalis) is a major target for control in Chinese rice production. Its overwintering population directly determines the intensity of infestation in the following year. Based on field survey data and concurrent meteorological data from 2004 to 2022 for the overwintering population of C. suppressalis in Nanchang county of Jiangxi province, this study analyzed the correlation between trends in the overwintering population and pre−winter meteorological conditions. Key meteorological factors were screened to construct multiple linear regression models for both the average and maximum overwintering populations. Standardized regression coefficients (β) were used to evaluate the effects of selected meteorological factors. This study aimed to elucidate the impact of pre−winter meteorological conditions on C. suppressalis and to provide a reference for dynamic pest monitoring under changing climatic conditions. The results indicates that: (1) from 2004 to 2013, the overwintering population of C. suppressalis in Nanchang county exhibited a decreasing trend. After 2014, however, the population increased sharply, with a statistically significant rise (P<0.01). The average overwintering population exceeded 30.00×104 individuals·ha1, while the maximum overwintering population remained consistently above 130.00×104 individuals·ha1. Between 2015 and 2022, the occurrence level of C. suppressalis in Nanchang county remained at the highest damage level (Level 5). (2) Key meteorological factors influencing the average overwintering population were the average temperature in mid−October, the minimum temperature in mid−November, and the average relative humidity from late November to early December of the same year, with absolute correlation coefficients all exceeding 0.40 (P<0.05). Similarly, key factors influencing the maximum overwintering population were the minimum temperature in mid−October, the minimum temperature in mid−November, and the sunshine duration in November of the same year, with absolute correlation coefficients all exceeding 0.40 (P<0.05). (3) Multiple linear regression models for the average and maximum overwintering populations were established based on these key factors. Both models fit the training dataset well (average: R²=0.55, P<0.05; maximum: R²=0.56, P<0.01), but their generalization capability was unstable. Analysis using standardized regression coefficients (β) revealed that the most significant pre−winter factor affecting the average overwintering population was the average temperature in mid−October (β=−0.62), showing a significant negative correlation. The main pre−winter factors affecting the maximum overwintering population were the minimum temperature in mid−October (β=−0.40) and the minimum temperature in mid−November (β=0.39), with the former showing a negative correlation and the latter a positive correlation. This study indicates that warming in mid−October before winter suppresses the overwintering base population of C. suppressalis, while higher temperatures in November favor population expansion. This study clarifies the stage−specific and comprehensive impact of pre−winter meteorological conditions on the overwintering population of C. suppressalis and highlights the critical role of pre−winter temperatures in controlling the pest source. It provides a reference for developing dynamic monitoring and control strategies for pests under changing climatic conditions. 

Key words: Chilo suppressalis, Overwintering period, Initial insect population, Meteorological factors, Multiple linear regression