中国农业气象 ›› 2025, Vol. 46 ›› Issue (6): 781-791.doi: 10.3969/j.issn.1000-6362.2025.06.004

• 农业生态环境栏目 • 上一篇    下一篇

六种机器学习算法对西藏那曲草甸土土壤剖面温度的模拟效果对比

徐俊杰 , 于一雷, 杨丽虎 , 李文彦 , 吕翠翠 , 韦欣   

  1. 1.中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京 100101;2.中国科学院大学,北京 100049; 3.河北大学生态环境系,保定 071002;4.中国科学院雄安创新研究院(筹),雄安 071899;5.地下水污染控制与修复教育部工程研究中心/北京师范大学,北京100875;6.防灾科技学院生态环境学院,三河 065201
  • 收稿日期:2024-07-08 出版日期:2025-06-20 发布日期:2025-06-19
  • 作者简介:徐俊杰,E-mail:sherlockjjobs@163.com
  • 基金资助:
    河北省重大科技成果转化专项项目(23267201Z);地下水污染控制与修复教育部工程研究中心开放基金项目项目(GW203312);雄安新区农业创新驿站项目(E2H0006D);中国科学院前瞻战略科技先导专项项目(A类先导专项)盐碱地扩容调蓄与多水源利用(XDA0440000)

Comparative Simulation of Six Machine Learning Algorithms on Soil Profile Temperature in Naqu, Xizang

XU Jun-jie, YU Yi-lei, YANG Li-hu, LI Wen-yan, LV Cui-cui, WEI Xin   

  1. 1.Key Laboratory of Land Water Cycle and Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2.University of Chinese Academy of Sciences, Beijing 100049; 3.School of Eco-Environment, Hebei University, Baoding 071002; 4.Xiong’an Institute of Innovation, Chinese Academy of Sciences, Xiong’an 071899; 5.Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education/Beijing Normal University, Beijing 100875; 6.Institute of Disaster Prevention Science and Technology, Sanhe 065201
  • Received:2024-07-08 Online:2025-06-20 Published:2025-06-19

摘要:

土壤温度预测的研究目前主要集中在土壤表层,然而关于深层土壤温度的预测较少,尤其是在相关气象数据不易获取的高寒地区。本研究采用传统的随机森林算法、粒子群优化和蚁群优化的随机森林算法,以及三种神经网络方法(径向基函数RBF、BP神经网络、极限学习机ELM),预测7个深度(0cm、10cm、20cm、30cm、40cm、50cm和60cm)的土壤温度,并比较不同机器学习算法在预测不同土壤深度温度时的性能。利用西藏那曲市2017−2019年土壤温度和气象要素数据集,将气温、湿度、太阳辐射、降水量和大气压作为模型的输入变量,并使用泰勒图进行模型的评估。结果表明:西藏那曲地区浅层土壤温度变化剧烈,直接受大气温度和太阳辐射的影响,而具有一定的热绝缘性的深层土壤温度变化较为平稳,且表现为明显的季节性波动特征;对比不同模型发现,在多个深度的土壤温度预测中,RBF(径向基函数)神经网络模型的预测精度、稳定性和泛化能力均表现出了更高的准确性,R2范围为0.9016~0.9904,MSE(均方误差)在0.2501~2.7725℃,在50cm深度处精度最高,R2达到了0.9904;其次为RF模型,R2在0.8861~0.9381。RBF神经网络模型能够更准确地捕捉土壤温度与各种影响因素之间的复杂关系,包括气象条件、土壤深度等。本研究提供了一种更为可靠和精确的工具来预测不同深度的土壤温度,为农业管理、环境保护和气候变化研究等领域提供了一定的科学依据。

关键词: 土壤温度, 机器学习, 神经网络, 预测, 随机森林, 西藏那曲

Abstract:

 Research on soil temperature prediction mainly focuses on the surface layer, while relatively few studies on deep soil temperature, especially in high−altitude areas where relevant meteorological data are difficult to obtain. Authors employed six machine learning algorithms, which included the traditional Random Forest (RF), Particle Swarm Optimization - based Random Forest (PSO-RF), Ant Colony Optimization - based Random Forest (Ant-RF), as well as three neural network methods [Radial Basis Function (RBF), Backpropagation (BP), and Extreme Learning Machine (ELM)] to predict soil temperature at seven depths (0cm, 10cm, 20cm, 30cm, 40cm, 50cm and 60cm). Meanwhile, comparison of different machine learning algorithms in predicting soil temperatures at different depths were performed. The application of these algorithms in predicting soil temperature at different depths was compared using a dataset of soil temperature and meteorological data from Naqu city (Xizang) from 2017 to 2019. Then, these data were used as input variables for the models, which included temperature, humidity, cumulative solar radiation, precipitation and atmospheric pressure. At the same time, Taylor diagrams were used for model evaluation. The results showed that soil temperatures in the shallow layers changed dramatically, directly influenced by atmospheric temperature and solar radiation, while deep soil temperatures changed more steadily, with certain thermal insulation properties and obvious seasonal fluctuation characteristics. Comparing different models, it was found that in the prediction of soil temperatures at multiple depths, the RBF (radial basis function) neural network model demonstrated higher accuracy in prediction precision, stability and generalization ability, with R2 ranging from 0.9016 to 0.9904 and MSE (mean square error) between 0.2501 and 2.7725 °C, achieving the highest accuracy at a depth of 50cm, with R2 reaching 0.9904. The model performed best at a 50cm depth, where R² reached 0.9904. Afterwards, the RF model followed, with R2 ranging from 0.8861 to 0.9381. Therefore, the RBF model could more accurately capture the complex relationships between soil temperature and various influencing factors, including meteorological conditions and soil depth. This study provides a more reliable and accurate tool for predicting soil temperatures at different depths, thereby offering important scientific basis for fields such as agricultural management, environmental protection, and climate change research.

Key words: Soil temperature, Machine learning, Neural networks, Forecast, Random forest, Xizang Naqu