中国农业气象 ›› 2025, Vol. 46 ›› Issue (6): 883-894.doi: 10.3969/j.issn.1000-6362.2025.06.013

• 农业气象信息技术栏目 • 上一篇    下一篇

基于能耗和成本优化的分层模型预测控制温室环境

任志玲,蒋晴,董云   

  1. 1.辽宁工程技术大学鄂尔多斯研究院,鄂尔多斯 017000,中国;2.辽宁工程技术大学电气与控制工程学院,葫芦岛 125105,中国;3. 比勒陀利亚大学电气电子与计算机工程学院,比勒陀利亚 0002,南非
  • 收稿日期:2024-06-21 出版日期:2025-06-20 发布日期:2025-06-19
  • 作者简介:任志玲,教授,从事电气节能减排和智能控制理论与研究方向,E-mail:lngdrzl@163.com
  • 基金资助:
    辽宁省教育厅基本科研项目(JTQN2023197);辽宁工程技术大学鄂尔多斯研究院校地科技合作培育项目(YJY-XD-2023-004)

Hierarchical Model Predictive Control of Greenhouse Environment Based on Energy Consumption and Cost Optimization

REN Zhi-ling, JIANG Qing, DONG Yun   

  1. 1.Ordos Research Institute of Liaoning Technical University, Ordos 017000, China; 2.Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China; 3. School of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa
  • Received:2024-06-21 Online:2025-06-20 Published:2025-06-19

摘要:

为提高venlo型温室能源效率并降低生产成本,提出包含优化层和控制层的分层模型预测控制(Hierarchical model predictive control,HMPC)方法。优化层分别以能耗最小和分时电价下总运行成本最小为目标,构建两种用于提高温室能源利用率和降低温室成本的优化策略。通过敏感性分析,研究电价、CO2价格以及环境条件约束范围对成本优化的影响。控制层利用模型预测控制Model predictive control,MPC)解决模型对象失配和抑制系统扰动,利用相对平均偏差和最大相对偏差,对比分析最小成本优化结果在2%、6%、12%的干扰下MPC和开环控制的跟踪性能,以期得到更加稳定、可靠的温室控制系统。结果表明:最小能耗情景总能耗是最小成本情景79.92%;最小成本情景总成本是最小能耗情景83.61%;温度和平均相对湿度的约束对减少温室运行成本影响显著;不同系统扰动下,MPC均具有良好的跟踪性能。温室分层模型预测控制可以有效提高温室控制精确度,以提高温室能源效率并降低生产成本。

关键词: 温室气候控制, 分时电价, 分层模型预测控制, 能源效率, 运行成本

Abstract:

In order to improve the energy efficiency and reduce the production cost of Venlo greenhouse, a Hierarchical model predictive control (HMPC) method including optimization layer and control layer was proposed. The optimization layer aimed to minimize the energy consumption and the total operating cost at the time of using price respectively, and construct two strategies to increase the energy utilization rate and reduce the greenhouse cost. Sensitivity analysis was carried out to study the impact of electricity price, CO2 price and the range of environmental condition constraint on cost optimization. In the control layer, Model predictive control (MPC) was used to solve the model object mismatch and suppress the system disturbance. The relative average deviation and maximum relative deviation were used to compare and analyze the tracking performance of MPC and open−loop control under 2%, 6% and 12% perturbations, to obtain a more stable and reliable greenhouse control system. The results showed that the constraints on temperature and average relative humidity had a significant impact on reducing the operating cost of the greenhouse. The total energy consumption in the lowest energy consumption scenario was 79.92% of that in the lowest cost scenario. The total cost of the lowest cost scenario was 83.61% of the lowest energy consumption scenario. The MPC had a good tracking performance under different systematic perturbation. Greenhouse hierarchical model predictive control can effectively improve greenhouse control accuracy, increase greenhouse energy efficiency and reduce production costs. 

Key words: Greenhouse climate control, Time-of-use tariff, Hierarchical model predictive control, Energy efficiency, Operating cost