中国农业气象 ›› 2025, Vol. 46 ›› Issue (6): 895-906.doi: 10.3969/j.issn.1000-6362.2025.06.014

• 农业气象信息技术栏目 • 上一篇    

基于光学遥感提取农业灌溉信息的研究进展

李东宇,王培娟,李扬,王旗,马玉平   

  1. 中国气象科学研究院,北京 100081
  • 收稿日期:2024-07-23 出版日期:2025-06-20 发布日期:2025-06-19
  • 作者简介:李东宇,E-mail:ldy_622@163.com
  • 基金资助:
    国家重点研发计划项目课题(2022YFD2001003);国家自然科学基金项目(32171916);中国气象科学研究院基本科研业务项目(2023Z014;2024Z001);中国气象科学研究院科技发展基金项目(2023KJ025;2024KJ010);中国气象局重点创新团队项目(CMA2024ZD02)

Research Progress on the Extraction Methods of Agricultural Irrigation Information Based on Optical Remote Sensing Data

LI Dong-yu, WANG Pei-juan, LI Yang, WANG Qi, MA Yu-ping   

  1. Chinese Academy of Meteorological Sciences, Beijing 100081, China
  • Received:2024-07-23 Online:2025-06-20 Published:2025-06-19

摘要:

灌溉是农田管理的重要组成部分,及时、准确地获取灌溉信息对现代化农业生产具有重要意义。随着遥感技术的不断发展,光学遥感提取农田灌溉信息的方法克服了传统田间实测法的低质低效问题,得到了广泛应用。本文基于光学遥感数据的植被指数法、土壤水分法和蒸散发法反演农业灌溉信息的原理,梳理目前发展现状并总结各方法优缺点以及发展趋势。结果表明:随着研究范围由灌区县域的小区域向省域、国家区域的大区域拓展,需获取灌溉信息的种类更丰富和复杂,研究者对现有研究方法不断优化。综合多种模型方法、结合机器学习算法,可有效提升农业灌溉信息的提取精度,也是基于光学遥感数据提取农业灌溉信息的主流发展趋势。然而该方法目前仍存在时间滞后、穿透性较差等问题,未来可基于多源数据、多种方法并引入机器学习算法的基础上,研究适用于不同时空尺度下的灌溉信息模型,深入挖掘其内在机理,不断提高光学遥感数据对农业灌溉信息的提取精度

关键词: 灌溉, 光学遥感, 土壤含水量, 蒸散发

Abstract:

 Irrigation plays an important role in farmland management and timely and accurate access to irrigation information is important for modern agricultural production. With the continuous development of remote sensing technologies, optical remote sensing has surpassed traditional field measurement methods, which are known for their low quality and efficiency, and has found wide applicationIn this paper, the principles of inversing agricultural irrigation information using the vegetation indeices, soil moisture, and evapotranspiration methods based on optical remote sensing data were outlined, and the advantages and disadvantages of each method and their development trends were summarized. The results indicated that as research expands from small irrigation districts to larger provincial and national regions, the types of irrigation information required become more diverse, researchers were continuously optimizing existing methods to address their shortcomings, leading to the maturation of research techniques. Integration of multi-parameter inversion methodologies and machine learning algorithms could effectively improve the precision of agricultural irrigation information extraction, which was also the leading trend in optical remote sensing data extraction. This approach representd two major trends in the extraction of agricultural irrigation information based on optical remote sensing data. However, challenges such as time lags and limited penetration still remain. Future research should focus on developing models suitable for different spatial and temporal scales by utilizing the integration of multi-parameter inversion methodologies and machine learning algorithms, and should aim to deepen the understanding of underlying mechanisms and continuously improve the precision of agricultural irrigation information extraction from optical remote sensing data.

Key words: Irrigation, Optical remote sensing, Soil moisture content, Evapotranspiration