中国农业气象 ›› 2017, Vol. 38 ›› Issue (10): 672-678.doi: 10.3969/j.issn.1000-6362.2017.10.006

• 论文 • 上一篇    下一篇

甜椒根区基质与土垄交界处热通量变化特征

李宗耕,傅国海,刘文科   

  1. 中国农业科学院农业环境与可持续发展研究所/农业部设施农业节能与废弃物处理重点实验室, 北京100081
  • 收稿日期:2017-03-11 出版日期:2017-10-20 发布日期:2017-10-10
  • 作者简介:李宗耕(1993-),硕士生,研究方向为设施作物根区环境控制。E-mail:lizonggeng93@163.com
  • 基金资助:
    “十三五”国家重点研发计划项目课题(2016YFD0801001)

Heat Flux Changes at Junction between Root Zone Matrix and Soil Ridge of Sweet Pepper

LI Zong-geng, FU Guo-hai, LIU Wen-ke   

  1. Institute of Environment and Sustainable Development in Agricultural, Chinese Academy of Agricultural Sciences/Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing 100081, China
  • Received:2017-03-11 Online:2017-10-20 Published:2017-10-10

摘要: 在日光温室中采用新型土垄内嵌式基质栽培(SSC)方法栽培甜椒。运用土壤热通量板探究土垄(SR)、标准垄(NR)、窄标准垄(NRn)、矮标准垄(NRs)和种植密度加倍标准垄(NRd)5种不同规格栽培垄东西侧水平方向以及根区垂直方向上热通量昼夜变化特征,探究适合冬季日光温室蔬菜生产的栽培垄。结果表明:各处理热通量均呈相同的昼夜单峰曲线变化特征,但不同处理吸放热的时间有所差异。栽培垄东侧水平方向上,晴天时SR、NR、NRn、NRd4个处理根区吸热的时间为9:00-14:00,阴天时吸热时间延后2h;晴天NRs在23:00-14:00吸热,阴天一直处于吸热状态。栽培垄西侧水平方向上,NRs处理一直为吸热状态,其余4个处理在9:00-17:00吸热。根区垂直方向上热通量变化表明,SR、NR、NRn、NRd4个处理吸热时间晴天为11:00-18:00,阴天为12:00-17:00;NRs放热的时间比其它处理晚2~3h。5个处理在东侧、西侧水平方向上和根区垂直方向上吸放热差值因位置不同有较大差异,在东侧水平方向和根区垂直方向上各处理以放热为主,而在西侧水平方向上吸热较多。东西侧水平方向和根区基质垂直方向上NRs处理基质吸热多放热少,NRd处理基质吸热少放热多,故NRd处理在冬季能更好地维持根区温度,在日光温室冬季和早春季蔬菜生产中具有更好的应用前景。

关键词: 日光温室, 起垄内嵌式基质栽培, 甜椒, 热通量

Abstract: A novel soil-ridged substrate-embedded cultivation (SSC) method was used to cultivate sweet peppers in Chinese solar greenhouse. Five treatments, including soil ridge (SR), normal ridge (NR), narrow normal ridge (NRn), short normal ridge (NRs) and the double plant density of the normal ridge (NRd), were set to observe diurnal heat flux changes of east and west horizontal directions and the vertical direction of the root zone by using heat flux plates, and select a kind of ridge which was most suitable for vegetables winter production in Chinese solar greenhouse. The results showed that soil heat flux of each treatment presented unimodal curve diurnal changes synchronously, but the time of heat absorption and heat release were different. For east horizontal direction of ridges, the root zones of SR, NR, NRn and NRd absorbed heat at 9:00-14:00 on sunny days, and the time of heat absorbing delayed 2 hours on cloudy days. NRs absorbed heat at 23:00-14:00 on sunny days, and NRs absorbed heat all day when it was cloudy. For west horizontal direction of ridges, NRs absorbed heat all the time, and the rest four treatments absorbed heat at 9:00-17:00. In the vertical direction of root zone, heat flux changes showed that SR, NR, NRn and NRd absorbed heat at 11:00-18:00 in sunny days and 12:00-17:00 in cloudy days. Release heat time of NRs was 2-3 hours later than other treatments. Difference of heat absorption and release of five treatments changed with different locations on horizontal directions of east and west and vertical direction of root zone. Each treatment primarily absorbed heat on the horizontal direction of east side and vertical direction of root zone, but released heat on the horizontal direction of west side. In the junction between east and west lateral soil of ridge and matrix of root zone, the heat absorbed by the root zone of NRs was larger than that of the exothermic heat, while that of NRd was much less than released. So NRd treatment could maintain well root zone temperature in winter, it had a better application prospect in vegetables production in winter and early spring in Chinese solar greenhouse.

Key words: Chinese solar greenhouse, SSC, Sweet pepper, Heat flux