Chinese Journal of Agrometeorology ›› 2017, Vol. 38 ›› Issue (02): 88-95.doi: 10.3969/j.issn.1000-6362.2017.02.003

Previous Articles     Next Articles

Impacts of Night Warming on Rice Growth, Physiological Properties and Yield Components

ZHANG Yi-wei, LOU Yun-sheng, ZHU Huai-wei, ZHAO Si-di, SHI Yi-fan   

  1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2016-06-25 Online:2017-02-20 Published:2017-02-15

Abstract: More attentions have been paid to the impacts of climate change on rice production around the world. In this paper, an aluminum foil reflective film was used to cover rice plants at night (19:00-6:00) daily for night warming excluding strong windy and rainy days from June to November in 2015 under field conditions. The experiment was designed with two treatments, night warming (NW) and control (CK, ambient temperature). An adjustable frame (2m×2m×2m) was used to place the aluminum foil reflective film over rice canopy. The height of the aluminum foil reflective film was adjusted weekly to keep a distance of 30 cm above rice canopy. The parameters of rice growth, photosynthesis and transpiration as well as yield components were measured at rice tillering stage, jointing stage, heading-flowering stage, grain-filling stage and maturity stage, respectively. The parameters included tiller number, chlorophyll content (SPAD value), leaf area index, photosynthesis and transpiration parameters, and yield components (effective panicle number, grain number per panicle and 1000-grain weight). The results showed that, (1) air temperature over rice canopy at night was evidently increased by covering the canopy with aluminum foil reflective film, in other word, night warming (NW) treatment increased the canopy air temperature by 0.4℃ on average throughout rice growth period. (2) Compared with control, NW treatment reduced tiller number by 4.33, and decreased chlorophyll content (SPAD value) at tillering stage, jointing stage, heading-flowering stage, grain-filling stage and maturity stage by 0.2%, 2.75%, 6.31%, 10.77% and 32.03%, respectively. But had no obvious effect on leaf area index. (3) Night warming decreased significantly the net photosynthesis rate, transpiration rate and stomatal conductance at different growth stages. (4) Night warming decreased grain number per panicle by 12.76%, effective panicles by 19.02% and yield by 32.54%, but increased 1000-grain weight by 3.93%. It is suggested that night warming affected significantly rice growth and photosynthesis, and further researches needed to investigate the effects of different warming treatments on rice production and to simulate its trend in the view of future climate change.

Key words: Night warming, Climate change, Rice, Net photosynthetic rate, 1000-grain weight