[1] Rosenzweig C,Elliott J,Deryng D,et al.Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison[J].Proceedings of the National Academy of Sciences of the United States of America,2014, 111(9):3268-3273.
[2] Davidb L,Marshallb B.On the use of statistical models to predict crop yield responses to climate change[J].Agricultural & Forest Meteorology,2010,150(11):1443-1452.
[3] Elliott J,Müller C,Deryng D,et al.The Global Gridded Crop Model Intercomparison:data and modeling protocols for Phase 1(v1.0)[J].Geoscientific Model Development,2015,8(2): 261-277.
[4] Müller C,Elliott J,Chryssanthacopoulos J,et al.Global gridded crop model evaluation:benchmarking,skills,deficiencies and implications[J].Geoscientific Model Development,2017,10(4): 1403-1422.
[5] Folberth C,Elliott J,Müller C,et al.Uncertainties in global crop model frameworks:effects of cultivar distribution, crop management and soil handling on crop yield estimates[J]. Biogeosciences Discussions,2016,(12):1-30.
[6] Asif S,Naqvi A,Ashfaq M,et al.Current agricultural production system of punjab is vulnerable to climate change[J].2017,55(1): 125-135.
[7] Frieler K,Schauberger B,Arneth A,et al.Understanding the weather signal in national crop-yield variability[J].Earth’s Future,2017,5(6):605-616.
[8] Iizumi T,Yokozawa M,Sakurai G,et al.Historical changes in global yields:major cereal and legume crops from 1982 to 2006[J].Global Ecology and Biogeography,2014,23(3): 346-357.
[9] Ray D K,Ramankutty N,Mueller N D,et al.Recent patterns of crop yield growth and stagnation[J].Nature Communications, Nature Publishing Group,2012,(3):1293-1297.
[10] Li T,Hasegawa T,Yin X,et al.Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions[J].Global Change Biology,2015,21(3):1328-1341.
[11] Schleussner C-F,Deryng D,Müller C,et al.Crop productivity changes in 1.5℃ and 2℃ worlds under climate sensitivity uncertainty[J].Environmental Research Letters,2018,13(6): 064007.
[12] Rosenzweig C,Ruane A C,Antle J,et al.Coordinating AgMIP data and models across global and regional scales for 1.5 ℃ and 2.0 ℃ assessments[J].Phil. Trans.R.Soc.A.,2017,376(2199): 20160455.
[13] 张祎, 赵艳霞. 多模式集合模拟气候变化对玉米产量的影响[J].中国生态农业学报,2017,25(6):941-948.
Zhang W,Zhao Y X.Multi-model emsemble for simulation of the impact of climate change on maize yield[J].Chinese Journal of Eco-Agriculture,2017,25(6):941-948.(in Chinese)
[14] 黄健熙,黄海,马鸿元,等.基于MCMC方法的WOFOST模型参数标定与不确定性分析[J].农业工程学报,2018, 34(16):113-119.
Huang J X,Huang H,Ma H Y,et al.Markov chain monte carlo based WOFOST model parameters calibration and uncertainty analysis[J].Transactions of the CSAE,2018,34(16): 113-119.(in Chinese)
[15] 杨绚,汤绪,陈葆德,等.利用CMIP5多模式集合模拟气候变化对中国小麦产量的影响[J].中国农业科学,2014,47(15): 3009-3024.
Yang X,Tang X,Chen B D,et al.Impacts of climate change on wheat yield in China simulated by CMIP5 multi-model ensemble projections[J].Scientia Agricultura Sinica,2014, 47(15):3009-3024.(in Chinese)
[16] 姚凤梅,秦鹏程,张佳华,等.基于模型模拟气候变化对农业影响评估的不确定性及处理方法[J].科学通报,2011, 56(8):547-555.
Yao F M,Qin P C,Zhang J H,et al.Uncertainties in assessing the effect of climate change on agriculture using model simulation and uncertainty processing methods[J].Chin Sci Bull,2011,56(8):547-555.(in Chinese)
[17] 杨伟才,毛晓敏.气候变化影响下作物模型的不确定性[J]. 排灌机械工程学报,2018,36(9):874-879,902.
Yang W C,Mao X M.Uncertainty of crop models under influence of climate change[J].Journal of Drainage and Irrigation Machinery Engineering,2018,36(9):874-879,902. (in Chinese)
[18] 秦鹏程,姚凤梅,曹秀霞,等.利用作物模型研究气候变化对农业影响的发展过程[J].中国农业气象,2011,32(2):240-245.
Qin P C,Yao F M,Cao X X,et al.Development process of modeling impacts of climate change on agricultural productivity based on crop models[J].Chinese Journal of Agrometeorololy,2011,32(2):240-245.(in Chinese)
[19] de Wit A J W,van Diepen C A.Crop growth modelling and crop yield forecasting using satellite-derived meteorological inputs[J].International Journal of Applied Earth Observation and Geoinformation,2008,10(4):414-425.
[20] Drewniak B,Song J,Prell J,et al.Modeling agriculture in the Community Land Model[J].Geoscientific Model Development, 2013,6(2):495-515.
[21] Izaurralde R C,Williams J R,McGill W B,et al.Simulating soil C dynamics with EPIC:model description and testing against long-term data[J].Ecological Modelling,2006,192(3-4): 362-384.
[22] Williams J R.The EPIC model in:computer models of watershed hydrology,singh,VP[M].Water Resources Publications, Highlands Ranch,Colorado,USA,1995.
[23] Waha K,van Bussel L G J,Müller C,et al.Climate‐driven simulation of global crop sowing dates[J].Global Ecology and Biogeography,Wiley Online Library,2012,21(2):247-259.
[24] Bondeau A,Smith P C,Zaehle S,et al.Modelling the role of agriculture for the 20th century global terrestrial carbon balance[J].Global Change Biology,2007,13(3):679-706.
[25] Liu J,Williams J R,Zehnder A J B,et al.GEPIC-modelling wheat yield and crop water productivity with high resolution on a global scale[J].Agricultural Systems,2007,94(2):478-493.
[26] Elliott J,Kelly D,Chryssanthacopoulos J,et al.The parallel system for integrating impact models and sectors(pSIMS) [J].Environmental Modelling and Software,Elsevier Ltd, 2014,62(2014):509-516.
[27] Jones J W,Hoogenboom G,Porter C H,et al.The DSSAT cropping system model[J].European Journal of Agronomy, 2003,18(3-4):235-265.
[28] Folberth C, Skalsky R, Moltchanova E, et al. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations[J]. Nature Communications, 2016, 7(May): 11872.
[29] Liu W, Yang H, Folberth C, et al. Global investigation of impacts of PET methods on simulating crop-water relations for maize[J]. Agricultural and Forest Meteorology, Elsevier, 2016, 221: 164-175.
[30] Weedon G P,Gomes S,Viterbo P,et al.Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century[J].Journal of Hydrometeorology,2011,12(5): 823-848.
[31] Sacks W J,Deryng D,Foley J A,et al.Crop planting dates:an analysis of global patterns[J].Global Ecology and Biogeography,2010,19(5):607-620.
[32] Portmann F, Siebert S, Bauer C, et al. Global dataset of monthly growing areas of 26 irrigated crops[J]. Frankfurt Hydrology Paper, 2008,60:400.
[33] Portmann F T, Siebert S, D?ll P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling[J]. Global Biogeochemical Cycles, 2010,24(1).
[34] Mueller N D, Gerber J S, Johnston M, et al. Closing yield gaps through nutrient and water management[J]. Nature, 2013,494(7437):390.
[35] Potter P, Ramankutty N, Bennett E M, et al. Characterizing the spatial patterns of global fertilizer application and manure production[J]. Earth Interactions, 2010,14(1):1-22.
[36] Foley J A, Ramankutty N, Brauman K A, et al. Solutions for a cultivated planet[J]. Nature, 2011,145(7369):337-342.
[37] Nelson A, Gumma M K. A map of lowland rice extent in the major rice growing countries of Asia[OL].2015, http:// irri.org/our-work/research/policy-and-markets/mapping.
[38] Feng M, Huang C, Channan S, et al. Quality assessment of Landsat surface reflectance products using MODIS data[J]. Computers and Geosciences, Elsevier, 2012, 38(1): 9-22.
[39] Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research Atmospheres, 2001, 106(D7): 7183-7192.
[40] Iizumi T, Ramankutty N. How do weather and climate influence cropping area and intensity[J]. Global Food Security, 2015, 4: 46-50.
|