中国农业气象 ›› 2024, Vol. 45 ›› Issue (6): 594-608.doi: 10.3969/j.issn.1000-6362.2024.06.003

• 农业生物气象栏目 • 上一篇    下一篇

基于SWAP模型分析青铜峡灌区春小麦播期优化及其对灌溉需水量的影响

孙风朝,赵翠平,张杰,丁一民   

  1. 1.山西水利职业技术学院,运城 044004;2.中国电建集团北京勘测设计研究院有限公司,北京 100024;3.宁夏大学土木与水利工程学院,银川 750021
  • 收稿日期:2023-07-27 出版日期:2024-06-20 发布日期:2024-06-17
  • 作者简介:孙风朝,副教授,主要从事变化环境下水资源高效利用研究,E-mail:haojingding03@163.com
  • 基金资助:
    国家自然科学基金青年基金(52209059);宁夏重点研发计划引才专项项目(2022BSB03060)

Spring Wheat Sowing Date Optimization and Impact on Irrigation in Qingtongxia Irrigation Region Based on SWAP Model

SUN Feng-chao, ZHAO Cui-ping, ZHANG Jie, DING Yi-min   

  1. 1. Shanxi Conservancy Technical Institute, Yuncheng 044004, China; 2. Power China Beijing Survey, Design and Research Institute Co., Ltd , Beijing 100024; 3. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021
  • Received:2023-07-27 Online:2024-06-20 Published:2024-06-17

摘要: 以宁夏青铜峡灌区春小麦为研究对象,基于2a田间观测试验和率定后的SWAP模型,构建旱作区春小麦模型参数集,以偏差校正后的7个大气环流模式(General Circulation Models,GCMs)数据驱动模型,评估未来不同气候情景下(SSP2-45和SSP5-85)春小麦产量和灌溉需水量变化,定量分析播期调整对青铜峡灌区春小麦生长和耗水过程的影响。结果表明:参数校正后的SWAP模型能有效模拟青铜峡灌区春小麦生长过程;SSP2-45情景下未来两个时期(2021−2050年和2051−2080年)青铜峡灌区多模式平均最高温度相对于历史基准期(1991−2020年)分别增加1.6℃和2.6℃,两个时期SSP5-85情景下最高温度将分别增加1.8℃和3.6℃。在不改变播期和品种条件下,未来春小麦全生育期长度将随温度升高而缩短,最大缩短天数达14.2d,出现在SSP5-85情景下2051−2080年。SSP2-45情景下未来两个时期春小麦多模式平均产量将分别下降9.6%和12.9%,SSP5-85情景下则分别下降12.1%和17.2%;不同情景不同时期春小麦灌溉需水量变化幅度相对较小,均不超过3.5%;提前播种可有效减少青铜峡灌区春小麦产量损失,但不能完全抵消气候变化的负面影响,其中,SSP2-45情景下未来两个时期分别提前23d和33d播种,产量损失可控制在1.5%和5.3%,在SSP5-85情景下分别提前30d和42d播种,产量损失可分别控制在2.9%和5.4%。优化播种日期后,青铜峡灌区春小麦收获日期平均提前5d左右。未来不同情景不同时期下春小麦灌溉需水量增加明显,增加比例在4.0%~8.0%。

关键词: CMIP6, 气候变化, 春小麦, 适应性调控, 播期调整

Abstract: The expected negative effects of global warming on crop production can be mitigated by changing the planting dates, which is both low-cost and easy to implement. The parameter set of the localized spring wheat model in the Qingtongxia irrigation region (QTXIR) was calibrated using a two-year field experiment. The changes of spring wheat yield and irrigation water requirement (IWR) under two future climate scenarios (SSP2-45 and SSP5-85) were analyzed based on 7 bias-corrected global circulation models (GCMs) and the well-tested SWAP model. Simultaneously, the yield and IWR of spring wheat in QTXIR in response to changing the sowing date were also quantitatively analyzed. The results indicate that the spring wheat growth in the QTXIR can be effectively simulated by the parameter-adjusted SWAP model. Under the SSP2-45 scenario, the multi-model average maximum temperature in the QTXIR in the next two periods (2021−2050 and 2051−2080) will increase by 1.6℃ and 2.6℃ respectively relative to the historical baseline period (1991−2020), while under the SSP5-85 scenario, the maximum temperature will increase by 1.8℃ and 3.6℃ respectively in the next two stages. The length of spring wheat growth duration will continue to shorten with the increasing temperatures in the future under current sowing date and variety, with a maximum shortening of 14.2 days occurring between 2051 and 2080 under the SSP5-85 scenario. The multi-model average yield for spring wheat will decrease by 9.6% and 12.9% for the next two periods under the SSP2-45 scenario and by 12.1% and 17.2% for the corresponding periods under the SSP5-85 scenario. At the same time, the changes in irrigation water requirements for different scenarios and periods are relatively small, not exceeding 3.5%. Sowing in advance can effectively reduce the yield loss of spring wheat in the QTXIR, but it cannot fully offset the negative effects of climate change. Under the SSP2-45 scenario, in the next two periods, sowing 23 days and 33 days in advance respectively can control the yield loss to 1.5% and 5.3 %. Under the SSP5-85 scenario, when sowing 30 days and 42 days ahead, the yield losses can be controlled to 2.9% and 5.4% respectively. Under the SSP5-85 scenario, the yield loss can be controlled to 2.9% and 5.4% when sowing 30 and 42 days ahead, respectively. Under the optimized sowing date, the harvest date for spring wheat in the QTXIR will be forward by an average of 5 days. At the same time, IWR for spring wheat will increase significantly in all future scenarios and periods, with rates ranging from 4.0% to 8.0%.

Key words: CMIP6, Climate change, Spring wheat, Adaption, Sowing date adjustment