中国农业气象 ›› 2025, Vol. 46 ›› Issue (4): 580-591.doi: 10.3969/j.issn.1000-6362.2025.04.013

• 农业气象信息技术栏目 • 上一篇    

小麦籽粒蛋白质含量遥感监测研究进展

李梦夏,李军玲,李树岩   

  1. 中国气象局·河南省农业气象保障与应用技术重点实验室/河南省气象科学研究所,郑州 450003
  • 收稿日期:2024-06-16 出版日期:2025-04-20 发布日期:2025-04-14
  • 作者简介:李梦夏,E-mail:15251718328@163.com
  • 基金资助:
    河南省省级科技研发计划联合基金项目(232103810089;232103810094);河南省自然科学基金项目(252300420288);中国气象局“高标准农田智慧气象保障技术”青年创新团队项目(CMA2024QN03);中国气象局·河南省农业气象保障与应用技术重点开放实验室基金项目(AMF202206;AMF202404)

Remote Sensing Monitoring of Wheat Grain Protein Content: A Review

LI Meng-xia, LI Jun-ling, LI Shu-yan   

  1. 1.Henan Key Laboratory of Agrometeorological Ensuring and Applied Technique, China Meteorological Administration/Henan Institute of Meteorological Sciences, Zhengzhou 450003, China
  • Received:2024-06-16 Online:2025-04-20 Published:2025-04-14

摘要:

小麦籽粒蛋白质含量Grain protein content,GPC作为评估小麦品质的关键指标,其精准监测对提升小麦品质、提高市场价值具有重要意义。本文系统总结当前遥感技术在小麦GPC监测领域的最新研究进展,重点分析不同遥感监测模型的优缺点及存在问题,提出未来研究方向展望,旨在为GPC遥感监测的进一步发展提供参考。结果表明:地面、无人机、卫星遥感数据在小麦GPC监测中各具优势,随着数据扩展性增强,小麦GPC监测准确性略有下降。监测模型从经验模型发展到半机理或遥感与作物生长耦合模型,增加了小麦生长的农学参数和生态因子,有效提升监测模型的精度与普适性。半机理模型是监测小麦GPC的优选方案,在融合光谱信息和农学参数的北京小麦GPC遥感监测模型中加入气象因子后,模型R2提升了0.242。模型精度和区域普适性等方面目前仍面临诸多挑战,如GPC数据源的可靠性、小麦氮素垂直分布规律的复杂性以及模型区域扩展的局限性等。未来可通过融合多源数据、挖掘光谱信息以及探索多尺度数据转换的方法等,构建基于“星—空—”协同观测的多尺度小麦GPC监测模型,实现小麦品质高效、精准、全面监测。

关键词: 小麦, 籽粒蛋白质含量, 遥感监测

Abstract:

As an important factor for evaluating wheat quality, grain protein content (GPC) is crucial for guiding agricultural production and enhancing the market value of wheat. To advance the development of GPC remote sensing monitoring techniques, this paper systematically summarized the latest research, with a particular focus on analyzing the strengths, weaknesses, and challenges of diverse GPC remote sensing monitoring models. Results showed that remote sensing data from various platformsincluding ground, unmanned aerial vehicles (UAVs), and satelliteseach exhibit distinct advantages in monitoring GPC in wheat. However, as data scalability increased, the accuracy of GPC monitoring tends to decrease slightly. In terms of model construction, the development of wheat GPC monitoring models from empirical models to semi−empirical models or coupled remote sensing and crop growth models had increased agronomic parameters and ecological factors, which effectively improved both accuracy and spatio-temporal scalability. It was shown that the semi-empirical models were the preferred option for monitoring GPC. After adding meteorological factors into the Beijing wheat GPC model that integrated spectral information and agronomic parameters, the model's R² increased by 0.242. Currently, there were still many challenges in terms of model accuracy and regionally applications such as the reliability of GPC data, the complexity of the vertical distribution of nitrogen in wheat, and the limitations of regional expansion of the models. To address these issues, this paper proposed to evaluatground-based GPC, fusing effective data, mine spectral information and explore multi-scale transformation methods in the future. In addition, a multi-scale GPC monitoring model based on collaborative observations from ground stations, UAVs and satellites can be constructed to achieve efficient, accurate and comprehensive monitoring of wheat quality.

Key words: Wheat, Grain protein content, Remote sensing monitoring