中国农业气象 ›› 2026, Vol. 47 ›› Issue (1): 145-158.doi: 10.3969/j.issn.1000-6362.2026.01.013

• 高标准农田智慧气象监测与应用专刊 • 上一篇    下一篇

融合无人机多光谱信息的哨兵2号冬小麦叶面积指数估算

田宏伟,常江,李翠娜,成林   

  1. 1. 河南省气象科学研究所,郑州 450003;2. 中国气象局·河南省农业气象保障与应用技术重点实验室,郑州 450003;3.安阳国家气候观象台,安阳 455000;4.鹤壁市气象局,鹤壁 458030;5.中国气象局气象探测中心,北京 100081
  • 收稿日期:2025-01-14 出版日期:2026-01-20 发布日期:2026-01-16
  • 作者简介:田宏伟,E-mail:thwenigma@163.com
  • 基金资助:
    中国气象局创新发展专项项目(CXFZ2024J065);风云卫星先行计划三期项目(FY-APP-2024.0301);国家重点研发计划专项课题(2024YFD2301301);安阳国家气候观象台开放研究基金项目(AYNCOF202510);鹤壁市农业气象与遥感重点实验室开放研究基金(AYNCOF202510)

Estimation of Winter Wheat Leaf Area Index with Sentinel-2 by Integrating Multi-spectral Data from UAV

TIAN Hong-wei, CHANG Jiang, LI Cui-na, CHENG Lin   

  1. 1. Henan Institute of Meteorological Sciences, Zhengzhou 450003, China; 2. China Meteorological Administration·Henan Agrometeorological Support and Applied Technique Key Laboratory, Zhengzhou 450003; 3. Anyang National Climate Observatory, Anyang 455000; 4. Hebi Meteorological Bureau, Hebi 458030; 5. China Meteorological Administration Atmospheric Observation Center, Beijing 100081
  • Received:2025-01-14 Online:2026-01-20 Published:2026-01-16

摘要: 引入多光谱无人机作为过渡尺度,为解决遥感监测模型在叶面积指数(LAI)反演中由点到面的升尺度难题,综合比较Lasso回归、岭回归、高斯过程回归和随机森林回归4种机器学习算法在不同特征组合下对冬小麦叶面积指数(LAI)的模拟精度、空间分布及数据分布直方图,筛选适用于华北区域冬小麦LAI监测的无人机模型;并利用模型监测结果作为地面样本,构建哨兵2号冬小麦LAI监测模型,结合耕地分布对鹤壁市冬小麦LAI进行动态监测和评估。结果表明:(1)基于无人机多光谱数据构建的4种机器学习算法冬小麦LAI监测模型,模拟精度从高到低依次为Lasso回归、岭回归、高斯过程回归和随机森林回归,最小均方根误差分别为1.472、1.488、1.538和1.582。岭回归的模拟结果在高、低值区表现较均衡,随机森林回归模拟结果存在低值高估和高值低估的现象,Lasso回归模拟结果存在低值高估,高斯过程回归的模拟结果高、低值均低估。高斯过程回归、Lasso回归和岭回归模拟结果直方图符合正态分布特征,随机森林回归的模拟结果离散度较高,因此,18个特征的岭回归为无人机LAI最优监测模型。(2)基于哨兵2号构建的冬小麦LAI监测模型中,4种算法的模拟精度从高到低依次为岭回归、Lasso回归、高斯过程回归和随机森林回归,26个特征的岭回归为最优监测模型。(3)2023年3月28日、4月27日和5月12日,哨兵2号LAI动态监测结果显示鹤壁市耕地LAI平均值分别为2.50、3.22和2.92,监测结果比MODIS产品更精细。

关键词: 叶面积指数, 无人机遥感, 机器学习, 尺度转换

Abstract:

By comprehensively comparing the simulation accuracy, spatial distribution, and data distribution histograms of four machine learning algorithms (Lasso regression, Ridge regression, Gaussian process regression, and Random Forest regression), on the Leaf area index (LAI) of winter wheat under various feature combinations, a suitable unmanned aerial vehicle model for monitoring the LAI of winter wheat in the north China region was selected. Using the monitoring results from this model as ground truth, a Sentinel−2 winter wheat LAI monitoring model was developed to dynamically monitor and evaluate the LAI of winter wheat in Hebi city, based on the distribution of cultivated land. This study addressed the scale−up challenge in satellite remote sensing leaf area index (LAI) modeling, by innovatively introducing multispectral Unmanned aerial vehicles (UAV) as an intermediate scale. The results showed that: (1) among the four machine learning algorithms applied to UAV multispectral data, Lasso regression achieved the highest simulation accuracy (RMSE=1.472), followed by Ridge regression (RMSE=1.488), Gaussian process regression (RMSE=1.538) and Random forest regression (RMSE=1.582). The Ridge regression provided a balanced performance in both high and low values, while Random forest regression overestimates low values while underestimates high values, Lasso regression tended to overestimate low values and Gaussian process regression underestimated both extremes. The result histograms for Gaussian process regression, Lasso regression and Ridge regression exhibited a normal distribution, however, the histogram of Random forest regression displayed greater dispersion. Consequently, Ridge regression utilizing 18 features was confirmed to be the optimal model for monitoring LAI using UAV. (2) For Sentinel−2 based modeling, the algorithm performance ranked as Ridge regression > Lasso regression > Gaussian process regression > Random forest regression, and the Ridge regression utilizing 26 features was confirmed to be the optimal model for Sentinel−2 LAI monitoring. (3) The dynamic monitoring of cropland LAI in Hebi using Sentinel−2 data revealed that the average LAI values on March 28, April 27 and May 12 were 2.50, 3.22 and 2.92, respectively. This demonstrated stable monitoring with a higher spatial resolution than MODIS product.

Key words: Leaf area index (LAI), Unmanned aerial vehicles remote sensing, Machine learning, Scale transition