中国农业气象 ›› 2025, Vol. 46 ›› Issue (10): 1472-1486.doi: 10.3969/j.issn.1000-6362.2025.10.009

• 农业生物气象栏目 • 上一篇    下一篇

基于混合建模的作物单产遥感估算研究进展

许竞元,杜鑫,李强子,董泰锋,张源,王红岩,肖静,张家树   

  1. 1.中国科学院空天信息创新研究院/遥感卫星应用国家工程研究中心,北京 100094;2.中国科学院大学,北京 100190;3.加拿大环境与气候变化部国家野生动物研究中心,渥太华 K1A0H3;4.中国地质大学,北京 100083
  • 收稿日期:2024-11-29 出版日期:2025-10-20 发布日期:2025-10-16
  • 作者简介:许竞元,E-mail:xujingyuan22@mails.ucas.ac.cn
  • 基金资助:
    中国科学院空天信息创新研究院科学与颠覆性技术项目(E2Z203010F)

Advances in Remote Sensing Estimation of Crop Yield Based on Hybrid Modeling

XU Jing-yuan, DU Xin, LI Qiang-zi, DONG Tai-feng, ZHANG Yuan, WANG Hong-yan, XIAO Jing, ZHANG Jia-shu   

  1. 1.Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; 2. University of Chinese Academy of Sciences, Beijing 100190, China; 3.National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa K1A0H3, Canada; 4. China University of Geosciences Beijing, Beijing 100083, China
  • Received:2024-11-29 Online:2025-10-20 Published:2025-10-16

摘要:

及时、准确地掌握农作物产量信息对国家粮食政策的决策制定和安全评估至关重要。遥感技术以低成本、高时效的特点,为区域大面积农作物产量估算提供有效手段。强化农学知识对单产估算模型的约束,解决训练样本稀缺问题,是目前农作物单产遥感估算研究的重要方向。本文归纳已有文献研究,总结梳理由数据与知识双重驱动的作物单产遥感估算方法,在混合建模方法基础上,系统阐述作物单产估算研究中多情景模拟数据集的构建方法和作物单产估算建模方法,概述常用的模型与算法,并总结遥感技术在混合建模方法中的应用。最后,综合讨论混合建模方法的不确定性,以及作物单产估算研究未来发展趋势与面临的挑战。结果表明:基于数据与知识双重驱动的混合建模方法在作物单产遥感估算领域取得重要进展。将数据驱动模型与知识驱动模型优势互补,能解决地面样本依赖问题的同时增强模型机理支撑。遥感数据源的不确定性、知识驱动模型对作物生理过程模拟的不确定性和数据驱动模型预测的不确定性是限制作物单产遥感估算精度提高的主要因素。如何提高模型输入数据的质量和可用性,强化知识驱动模型理论基础,加强数据驱动模型算法改进是未来混合建模方法应用于作物单产估算研究的发展趋势。

关键词: 遥感, 机器学习, 作物生长模型, 混合建模

Abstract:

 Timely and accurate access to crop yield information is critical for decision−making in national food policy and safety assessments. Remote sensing technology, with low cost and high efficiency, provides an effective means for large−scale crop yield estimation. Strengthening the integration of agronomic knowledge into crop yield estimation models and addressing the scarcity of training samples are key challenges in current research. In this paper, authors synthesized existing literature, summarized data− and knowledge−driven methods for crop yield estimation, and systematically discussed the methods for constructing multi−scenario simulation datasets and modelling techniques for crop yield estimation based on hybrid modeling approaches. The paper also provided an overview of commonly used models and algorithms, and summarized the application of remote sensing technology to hybrid modeling methods. Finally, it comprehensively discussed the uncertainties in hybrid modeling and outlined the future trends and challenged in crop yield estimation studies. The results showed that hybrid modeling approaches, driven by both data and knowledge had made significant progress in crop yield estimation. By combining the advantages of data−driven and knowledge−driven models, these approaches reduced the reliance on ground−truth samples while enhancing the mechanistic support for the predictions. Limiting factors for improving the accuracy of crop yield estimation included uncertainties in remote sensing data sources, the uncertainties in knowledge−driven models when simulating crop physiological processes, and the uncertainties in the predictions of data−driven models. Future trends will focus on improving the quality and availability of input data, strengthening the theoretical foundation of knowledge−driven models, and advancing algorithm improvements in data−driven models.

Key words: Remote sensing, Machine learning, Crop growth model, Hybrid modeling