中国农业气象 ›› 2026, Vol. 47 ›› Issue (2): 180-190.doi: 10.3969/j.issn.1000-6362.2026.02.002

• 高标准农田智慧气象监测与应用专刊 • 上一篇    下一篇

基于多源卫星时序数据的当季冬小麦识别技术

陈心桐,王圆圆,张宏群,谢铁军,王状,张凯迪,霍彦峰,荀尚培   

  1. 1.安徽省气象科学研究所/大气科学与卫星遥感安徽省重点实验室,合肥 230031;2.寿县国家气候观象台/中国气象局淮河流域典型农田生态气象野外科学试验基地,寿县 232200;3.国家卫星气象中心/中国气象局中国遥感卫星辐射测量和定标重点开放实验室,北京 100081;4.北京市气候中心,北京 100089
  • 收稿日期:2024-12-19 出版日期:2026-02-20 发布日期:2026-02-10
  • 作者简介:陈心桐,E-mail:chenxt@mail.bnu.edu.cn
  • 基金资助:
    国家重点研发计划专项课题(2023YFB3905802);中国气象局创新发展专项项目(CXFZ2025J118);安徽省气象局创新发展专项项目(CXB202301;CXM202306;YJG202203);中国气象局青年创新团队“高标准农田智意气象保障技术”项目(CMA2024QN03);北京市科学技术协会青年人才托举工程项目(BYESS2023205);安徽省自然科学基金“江淮气象”联合基金项目(2208085UQ04);中国气象局气象能力提升联合研究专项项目(22NLTSY006;22NLTSQ011)

Identification Technique for In-season Winter Wheat Based on Multi-source Satellite Time-series Data

CHEN Xin-tong, WANG Yuan-yuan, ZHANG Hong-qun, XIE Tie-jun, WANG Zhuang, ZHANG Kai-di, HUO Yan-feng, XUN Shang-pei   

  1. 1. Anhui Institute of Meteorological Sciences/Anhui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Hefei 230031, China; 2. Shouxian National Climatology Observatory/Huaihe River Basin Typical Farm Eco-meteorological Experiment Field of China Meteorological Administration, Shouxian 232200; 3. Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites/National Satellite Meteorological Centre, Beijing 100081; 4. Beijing Climate Center, Beijing 100089
  • Received:2024-12-19 Online:2026-02-20 Published:2026-02-10

摘要:

作物混种、种植区零散分布是影响遥感识别精度的主要原因之一。多源卫星时序数据可基于作物的特定生育期生长特征,有效区分目标作物与其他植被,提高识别精度。本研究基于冬小麦生长期植被变化特征,采用Sentinel−2卫星数据合成皖北地区冬小麦全生育阶段EVI指数,结合NDBI指数、SAVI指数、FY3D EVI时序数据、Sentinel1卫星VVVHVH/VV时序数据,基于主成分分析和随机森林法,开展冬小麦空间分布信息提取。结果表明:冬小麦EVI变化趋势在出苗返青期与其他植被存在明显差异,VVVH/VV后向散射特征在返青阶段后与其他植被存在明显差异。基于播种−越冬期、播种−抽穗期和播种−成熟期的时序数据获取的冬小麦识别总体精度分别为95.58%98.41%98.65%。抽穗阶段后的识别结果中,冬小麦田间道路及田块边界的识别效果明显优于越冬阶段前的识别结果。相比采用单一Sentinel2数据集,添加FY3D数据集后,冬小麦不同生育阶段识别精度提升1.714.10个百分点;添加Sentinel1数据集后,冬小麦不同生育阶段识别精度提升0.211.66个百分点。

关键词: 冬小麦, 生长期, 植被指数, SAR数据, 随机森林

Abstract:

Crop intercropping and fragmented planting patterns are major factors limiting the accuracy of crop identification using remote sensing. Multi-source satellite time−series data can effectively distinguish target crops from other vegetation by capturing their unique growth characteristics during specific phenological stages. In this study, the spatial distribution of winter wheat was extracted by integrating the EVI derived from Sentinel-2 across various growth stages, along with NDBI, SAVI, FY-3D EVI time series data, and VV, VH and VH/VV time series data from Sentinel-1. Principal component analysis and the random forest algorithm were employed for feature selection and classification. The results showed that the EVI trends of winter wheat during the emergence to green−up stages differed significantly from those of other vegetation. Similarly, VV and VH/VV backscatter features showed clear distinctions after the green−up stage. The overall classification accuracies using time−series data from sowing to wintering, heading and maturity stages were 95.58%, 98.41%, and 98.65%, respectively. Data from the sowingheading period achieved higher accuracy for field roads and boundaries compared to prewintering data. The addition of the FY-3D dataset improved the overall identification accuracy by 1.71pp to 4.10pp across different growth stages, while the inclusion of Sentinel-1 data increased accuracy by 0.21pp to 1.66pp.

Key words: Winter wheat, Growth stage, Vegetation index, SAR data, Random forest