中国农业气象 ›› 2026, Vol. 47 ›› Issue (2): 202-215.doi: 10.3969/j.issn.1000-6362.2026.02.004

• 高标准农田智慧气象监测与应用专刊 • 上一篇    下一篇

基于改进的YOLOv11检测苹果树叶片黑腐病

张莉,王裕灿   

  1. 河南省气象探测数据中心,郑州 450000
  • 收稿日期:2024-12-29 出版日期:2026-02-20 发布日期:2026-02-10
  • 作者简介:张莉,E-mail:421138336@qq.com
  • 基金资助:
    中国气象局河南省农业气象保障与应用技术重点实验室应用技术研究基金项目(KF202546)

Apple Leaf Black Rot Detection Based on Improved YOLOv11 Model

ZHANG Li, WANG Yu-can   

  1. Henan Meteorological Observation Data Center, Zhengzhou 450000, China
  • Received:2024-12-29 Online:2026-02-20 Published:2026-02-10

摘要:

苹果黑腐病(Black rot)是常见且具有破坏性的果树病害之一,严重时影响苹果的品质和产量。针对传统病害识别方法存在的小目标识别困难、复杂背景干扰以及检测效率低等问题,本文提出一种基于改进的YOLOv11检测苹果黑腐病的方法,在Backbone中引入C3K2模块,结合多尺度卷积的调节能力;在SPPF模块后添加C2PSA注意力模块;最后在Head结构中采用深度可分离卷积并引入分布焦点损失函数(DFL)和CIoU Loss。结果表明:改进后的YOLOv11模型在检测苹果黑腐病的表现在平均精确率均值mAP指标上达到99.5%,召回率达99.7%F1分数为99.6%相较YOLOv8模型提升3.2个百分点且检测帧率提升至48·s-1。消融实验结果显示,C3K2C2PSA模块与深度可分离卷积的组合可将mAP93.1%提升至95.2%本方法在保证苹果黑腐病小目标高精度识别的同时,显著提升检测结果的计算实时性,具备较强的实用性与部署价值。

关键词: 苹果黑腐病, YOLOv11, 目标检测, 深度可分离卷积

Abstract:

Apple leaf black rot is a common and destructive disease that severely affects apple quality and yield. To address the poor sensitivity to small targets, background clutter, and low efficiency of traditional identification methods, this study proposed an improved YOLOv11−based detector. A C3K2 module was introduced into the backbone to enhance multi−scale feature modeling; a C2PSA attention module was appended after the SPPF block; and the detection head adopted depthwise separable convolutions together with Distribution focal loss (DFL) and CIoU loss. The improved model achieved an mAP of 99.5%, a recall of 99.7%, and an F1−score of 99.6%, outperforming YOLOv8 by 3.2 percentage points and reaching 48 frames·s⁻¹. Ablation experiments showed that combining C3K2, C2PSA and depthwise separable convolutions raised mAP from 93.1% to 95.2%. The proposed method ensures high−precision detection of small black rot lesions on apple leaves while markedly improving real-time performance, and has strong practicality and deployment value.

Key words: Apple black rot, YOLOv11, Object detection, Depthwise separable convolution