中国农业气象 ›› 2021, Vol. 42 ›› Issue (03): 200-212.doi: 10.3969/j.issn.1000-6362.2021.03.004

• 农业生物气象栏目 • 上一篇    下一篇

低浓度营养液淋洗缓解基质栽培番茄根际养分富集的效果

王朝军,徐凡,郭文忠,陈菲,李灵芝   

  1. 1.山西农业大学园艺学院,太谷 030801;2.北京农业智能装备技术研究中心,北京 100097
  • 收稿日期:2020-09-28 出版日期:2021-03-20 发布日期:2021-03-20
  • 通讯作者: 李灵芝,教授,主要从事设施园艺及蔬菜生理生态研究,E-mail:13593061819@163.com
  • 作者简介:王朝军,E-mail:18447055829@163.com
  • 基金资助:
    宁夏回族自治区重点研发计划项目(2018BBF02024);北京市科技计划课题(D7110007617003)

Effect of Leaching with Low-concentration Nutrient Solution on Alleviating the Nutrient Enrichment in the Rhizosphere of Tomato Grown in Substrate

WANG Chao-jun, XU Fan, GUO Wen-zhong, CHEN Fei, LI Ling-zhi   

  1. 1. The College of Horticulture, Shanxi Agricultural University, Taigu 030801, China; 2.Beijing Research Centre of Intelligent Equipment for Agriculture, Beijing 100097
  • Received:2020-09-28 Online:2021-03-20 Published:2021-03-20

摘要: 为缓解基质栽培中根际养分富集对番茄植株造成的危害,以“硬粉8号”(Yingfen 8)番茄为试材,采用岩棉盆栽的方式,在人工气候室环境条件下,使用1/2浓度营养液对基质进行每天一次(C1)和每周一次(C2)淋洗以及不淋洗(CK)处理,通过对番茄根区养分及植株生长、产量等指标的测定,评价淋洗效果。结果表明:与灌溉液相比,各处理根际养分均出现了不同程度的富集,根区电导率(EC)值提高了31.26%~69.06%。低浓度营养液淋洗可以显著降低根区和回流液的EC值和离子浓度,整个生育期C1处理的根区溶液EC值比CK降低了22.36%,其中、Ca2+、K+和Mg2+浓度分别比CK降低48.51%、27.25%、25.54%和39.58%,C1处理回流液离子浓度变化趋势与根区溶液一致。此外,C1处理可以促进番茄株高和产量的增长,单株产量较CK提高了6.26%,其中第4、5穗果单果重分别增加17.02%、14.51%,单穗果产量分别增加13.42%、33.86%;C2处理根区溶液和回流液EC值及离子浓度均显著低于CK,但高于C1处理,其根区溶液EC降低了9.64%,而C2处理的平均单果重和产量与CK无显著差异。因此,低浓度营养液每天一次的淋洗方式可以更为有效地缓解基质栽培番茄生长中后期根区养分富集,研究结果可为基质栽培根区养分管理提供理论依据。

关键词: 番茄, 离子浓度, 岩棉, 养分富集, 淋洗

Abstract: With the extension of plants growth, the ion content in root zone showed a trend of increasing gradually in substrate culture. Tomatoes growth and development would be influenced by the changes of the ion concentration and its composition. In order to relieve the damage to the tomato plants caused by the nutrient enrichment in the substrate cultivation, taking "Yingfen 8" tomatoes as the experimental materials, a rock-wool potted experiment was conducted in the climatic chamber of National Agricultural Intelligent Equipment Engineering Technology Research Center from August 2019 to January 2020. The experiment included three treatments as leaching once a day (C1), leaching once a week (C2) and no leaching (CK), leaching liquor was 1/2 concentration nutrient solution. The environmental conditions of the artificial climate chamber were: daytime (9:00−17:00) temperature of 25℃, night (19:00−7:00 the next day) temperature of 15℃, sooner or later every 2h temperature transition; the average photosynthetic active radiation (PAR) of canopy was 300−400 μmol·m−2·s−1; the average CO2 concentration was 400−500mmol·mol−1; and the relative humidity was 65%/85% (day/night). From the 5th day after planting, 50mL of root zone solution and 50mL of backflow solution were collected at the end of leaching/irrigation drainage every day, and 105 times of samples were collected until the end of the experiment to determine their electrical conductivity (EC). Filtered irrigation fluid, root zone solution and reflux liquid were stored in a refrigerator at 4℃ every 7 days for nutrient ion determination, 16 times total. The role and effect of leaching with low-concentration were analyzed by testing the EC, ion concentrations, plant growth (height and stem thick), yield and other indexes. The results showed that the nutrients in the rhizosphere were enriched to different levels and the EC of the rhizosphere increased by 31.26%−69.06% compared with the irrigation liquid. Low concentration nutrient solution leaching could effectively reduce the EC, ion concentrations of root zone and reflux solution. Compared with treatment CK, the EC of root zone solution treated with C1 during the whole growth period reduced by 22.36%, the concentrations of , Ca2+, K+ and Mg2+ were decreased by 48.51%, 27.25%, 25.54% and 39.58%, respectively. The change trend of the reflux solution treated with C1 was consistent with that of root zone solution. In addition, compared with treatment CK, treatment C1 could promote the plant height growth and the yield of tomato. The yield per plant of C1 increased by 6.26%, among them, the single fruit weight of the 4th panicle and 5th panicle increased by 17.02% and 14.51%, respectively, also the yield per panicle increased by 13.42% and 33.86%, respectively. The EC and ionic concentrations of the root zone solution and reflux liquid treated with C2 were significantly lower than those of CK, but higher than those treated with C1. The EC of root zone solution of C2 was decreased by 9.64%. However, single fruit weight on average and yield of C2 treatment were not significantly different from those treated with CK. Therefore, leaching with low-concentration nutrient solution once a day (C1) can more effectively alleviate nutrient enrichment in the root zone in the middle and later stage of tomato growth in soilless cultivation, which could provide theoretical basis for nutrient management in the root zone of substrate cultivation.

Key words: Tomato, Ion concentration, Rock wool, Nutrient enrichment, Leaching