中国农业气象 ›› 2025, Vol. 46 ›› Issue (2): 179-188.doi: 10.3969/j.issn.1000-6362.2025.02.005

• 农业生态环境栏目 • 上一篇    下一篇

井冈山国家级自然保护区杉木径向生长对气候变化的响应

韦玉贵,叶清,陆国繁,冯文钟,韩晓芝,黄志强,邓文平   

  1. 1.鄱阳湖流域森林生态系统保护与修复国家林业和草原局重点实验室,南昌 330045;2. 江西省保护生物学重点实验室,南昌 330045;3. 庐山国家森林生态系统定位观测站,九江 332900;4. 东华理工大学自然保护地研究院,南昌 330013
  • 收稿日期:2024-01-20 出版日期:2025-02-20 发布日期:2025-02-20
  • 作者简介:韦玉贵,E-mail:1444082122@qq.com
  • 基金资助:
    国家自然科学基金项目(32201633)

Response of Radial Growth of Chinese Fir to Climate Change in Jinggangshan National Nature Reserve

WEI Yu-gui, YE Qing, LU Guo-fan, FENG Wen-zhong, HAN Xiao-zhi, HUANG Zhi-qiang, DENG Wen-ping   

  1. 1.Key Laboratory of Forest Ecosystem Protection and Restoration in Poyang Lake Basin of the State Forestry and Grassland Administration, Nanchang 330045, China; 2.Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang 330045; 3.Lushan National Observation and Research Station of Chinese Forest Ecosystem, Jiujiang 332900; 4.Institute of Nature Reserve, East China University of Technology, Nanchang 330013
  • Received:2024-01-20 Online:2025-02-20 Published:2025-02-20

摘要:

利用树木年轮学方法测定井冈山国家级自然保护区杉木逐年树轮宽度,建立标准年表,采用小波分析、多元回归和二元小波相干等方法分析杉木(Cunninghamia lanceolata)径向生长对气候因子的响应,明确杉木径向生长与气候因子的关系,为自然保护区杉木的经营管理提供理论参考。结果表明,19602020年井冈山国家级自然保护区年平均气温和年降水量呈上升趋势,年平均空气相对湿度变化不显著。期间杉木标准年表适用于树木年轮气候学分析且杉木径向生长年际变化不明显,周期特征明显,存在60a37a以及20a3个尺度主周期变化特征;杉木径向生长主要受上一年7月最高气温、当年10平均空气相对湿度、当年1月降水量的影响;交叉小波变换分析表明,杉木径向生长在2~3a尺度上滞后上一年7月最高温69个月,与当年10平均空气相对湿度和当年1月降水量有显著正相关的共轭周期;小波相干分析表明,杉木径向生长与上一年7月最高温度有2个共轭周期,第一周期尺度为6~7a,杉木径向生长滞后温度910.5个月,第2周期尺度为23a,杉木径向生长滞后温度69个月,与当年10月平均空气相对湿度存在显著正相关共轭周期,在1~2a尺度上滞后当年1月降水量36个月。降水温度平均空气相对湿度是影响井冈山国家级自然保护区杉木径向生长的主要气候因子。

关键词: 杉木, 径向生长, 气候变化, 交叉小波变换, 小波相干分析

Abstract:

The tree-ring width of Chinese fir (Cunninghamia lanceolata) trees in Jinggangshan National Nature Reserve was measured using the dendrochronology method, and then a standardized chronology was established. The radial growth response to climatic factors was further analyzed using wavelet analysis, multivariate regression, and binary wavelet coherence analysis methods. Our findings could provide valuable theoretical insights into the management of Chinese fir in the nature reserves. The results revealed that from 1960 to 2020, the annual average temperature and annual precipitation in the Jinggangshan National Nature Reserve showed an increasing trend. However, the change trend of mean annual relative humidity was not significant. From 1961 to 2022, the standard chronology of Chinese fir was suitable for dendroclimatology analysis, but the interannual variation of radial growth is not pronounced. There were three dominant periodicities: 60y, 37y, and 20y. The radial growth of Chinese fir was primarily influenced by the maximum temperature in the previous July, the average relative air humidity in October , and the precipitation in January. The analysis with crossed wavelet transform showed that the radial growth of Chinese fir exhibited a lag of 6−9 months on a 2−3y time scale, relative to maximum temperature in the previous July. There was a significant positive correlation between covariance periods and average relative air humidity in October and precipitation in January. The radial growth showed a two-period covariance with maximum temperature in the previous July. The first cycle, scaled to 6−7y, showed a lag of 9−10.5 months in relation to the temperature. The second cycle, scaled to 2−3y, displayed a lag of 6−9 months. There was a significant positive correlation between the average relative air humidity in October and the radial growth in the current year. January precipitation in the current year exhibited a lag of 3−6 months on a scale of 1−2y. In a summary, the radial growth of Chinese fir in Jinggangshan National Nature Reserve is primarily influenced by precipitation, temperature, and average relative air humidity, which are the key climatic factors. 

Key words: Chinese fir, Radial growth, Climate change, Crossed wavelet transform, Wavelet coherence analysis