中国农业气象 ›› 2023, Vol. 44 ›› Issue (11): 977-994.doi: 10.3969/j.issn.1000-6362.2023.11.001

• 农业生态环境栏目 •    下一篇

生物可降解地膜的应用效果及存在问题

郭波,杨振,何文清,刘家磊   

  1. 1.中国农业科学院农业环境与可持续发展研究所/农业农村部农膜污染防控重点实验室,北京 100081;2.山西农业大学资源环境学院/省部共建有机旱作农业国家重点实验室(筹),太原 030001;3.中国农业科学院西部农业研究中心,昌吉 831100
  • 收稿日期:2022-12-23 出版日期:2023-11-20 发布日期:2023-11-15
  • 通讯作者: 刘家磊,研究员,研究方向为生物可降解地膜。 E-mail:liujialei@caas.cn
  • 作者简介:郭波,E-mail:GUOBO9015@126.com
  • 基金资助:
    内蒙古自治区科技计划项目(2021GG0063);新疆维吾尔自治区重点研发计划项目(2022B2033)

Application Effectiveness and Problems of Biodegradable Mulch

GUO Bo, YANG Zhen-xing, HE Wen-qing, LIU Jia-lei   

  1. 1.Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Film Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Beijing 100081,China; 2.College of Resources and Environment, Shanxi Agricultural University/State Key Laboratory of Organic Dry Crop Agriculture jointly established by the Ministry and the Province, Taiyuan 030001; 3.Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100
  • Received:2022-12-23 Online:2023-11-20 Published:2023-11-15

摘要: 地膜覆盖栽培技术在给农业生产带来增产、增收的同时,由于对聚烯烃塑料地膜的长期使用,回收率不高等问题的存在,使其积存土壤中,造成严重的污染问题。在地膜残留严重的区域,土壤结构受到严重破坏,耕地质量下降,农业操作受阻,作物的出苗、营养吸收及根系生长发育受到限制。生物降解地膜在自然环境条件下可被细菌、真菌和放线菌等微生物降解,最终分解成CO2和H2O,不仅对土壤无污染而且对农作物的生长发育有促进作用,成为解决白色污染问题的有效途径之一。对生物降解地膜的不断深入研究,表明其对土壤环境及农作物产量等均有不同程度的影响,这些影响在不同区域和作物上存在较大的差异性,无法简单通过一项或者几项试验直接得出生物可降解地膜较塑料地膜PE优秀的结论。本文通过综述近年来有关生物可降解地膜对土壤环境和农作物生长发育及产量影响研究的结果,比较使用生物可降解地膜(BM)和塑料地膜(PE)处理后的各种实验效果,分析其优劣性并对生物可降解地膜性能的改进提出建议,以期不断完善生物可降解地膜的性能,实现农业科技的可持续发展。总结分析表明,(1)生物可降解地膜可以提高土壤温度和湿度,满足作物生长前期所需,加快出苗,缩短生长周期,同时对土壤有机质、有效氮和土壤酶活性等产生有益的影响,提高土壤养分含量。在微生物方面,生物可降解地膜可以促进土壤微生物含量和土壤呼吸速率的增长。同时,生物降解地膜具有较PE地膜优秀的减草能力,其中以黑色生物可降解地膜效果最佳,能够有效减少田间杂草数量,保证作物所需营养的供给。(2)在农作物方面,生物可降解地膜能在玉米生育前期和中期促进玉米生长,缩短生育时期,并提高产量。覆盖生物可降解地膜处理的棉花籽棉产量与PE地膜处理无显著差异,覆膜处理较裸地在产量上有显著提升。生物可降解地膜处理的马铃薯在生长前期因为土壤温度增加导致发芽更快,显著缩短生育周期,提早上市,并且较PE地膜和裸地能显著提高产量,其中黑色生物可降解地膜效果最明显。对于谷子作物,覆盖生物可降解地膜处理下的产量与PE地膜处理无显著差异,覆膜处理在产量上较裸地处理均有显著提升。而对于生长周期较短的番茄、茄子和甜菜等蔬菜作物,生物可降解地膜能够长时间发挥保温增墒的作用,促进作物快速生长,最终产量与覆盖PE地膜处理无明显差异甚至有小幅提升,且较裸地处理有显著提升。(3)提出生物可降解地膜现存的不同成分对土壤及农作物的影响问题、降解可控问题和成本问题,如降解速度难以控制、生物可降解地膜不完全降解导致的环境问题、技术成熟度不高以及价格较高的问题,同时对今后的研究发展方向提出建议,对生物可降解原料进行改性创新,降低成本,并对生物可降解地膜的降解机理进行调控,加强生物降解地膜的原材料、配方和生产工艺的研究,研发高性能、多功能化的生物可降解地膜,同时满足区域适用性和作物适用性的新型生物可降解地膜,为生物降解地膜向更多区域和更多作物种类的推广应用奠定理论基础。

关键词: 生物降解地膜, 土壤, 农作物, 增温保墒, 产量

Abstract: Mulch film mulching cultivation technology not only increases agricultural production and income, but also causes serious pollution problems because of the long-term use of polyolefin mulch film and low recovery rates. In areas with serious mulch film residue, the soil structure is seriously damaged, the quality of cultivated land is reduced, agricultural operations are blocked, and crop emergence, nutrient absorption and root growth and development are restricted. Biodegradable mulch film can be degraded by microorganisms such as bacteria, fungi and actinomycetes in the natural environment, and finally decomposed into CO2 and H2O, which not only has no pollution to soil but also promotes the growth and development of crops, and has become one of the effective ways to solve the problem of white pollution. With the deepening of the research on biodegradable mulch film, people found that biodegradable mulch film has different effects on soil environment and crop yield, and these effects are quite different in different regions and crops. It is not possible to directly draw the conclusion that biodegradable mulch film is better than PE mulch film through one or several experiments. In this paper, the effects of biodegradable mulch film on soil environment, crop growth and yield in recent years were summarized, and the experimental effects of biodegradable mulch film (BM) and mulch mulch film (PE) were compared, and their advantages and disadvantages were analyzed, and suggestions were put forward to improve the performance of biodegradable mulch film, so as to continuously improve the performance of biodegradable mulch film and realize the sustainable development of agricultural science and technology. Summary and analysis show that: (1) Biodegradable mulch film can increase soil temperature and humidity, meet the needs of crops in the early stage of growth, accelerate the emergence of seedlings, shorten the growth cycle, and have beneficial effects on soil organic matter, available nitrogen and soil enzyme activity, and improve soil nutrient content. In terms of microorganisms, biodegradable mulch film can promote the growth of soil microbial content and soil respiration rate. At the same time, biodegradable mulch film has better weed control ability than PE mulch film, among which black biodegradable mulch film has the best effect, which can effectively reduce the number of weeds in the field and ensure the supply of nutrients needed by crops. (2) In terms of crops, biodegradable mulch film can promote corn growth, shorten the growth period and increase the yield in the early and middle stages of corn growth. There was no significant difference between the yield of cotton seed cotton covered with biodegradable mulch film and PE mulch film, and the yield of cotton seed cotton covered with mulch film is significantly higher than that of bare land. The potato treated with biodegradable mulch film germinated faster in the early growth stage because of the increase of soil temperature, which significantly shortened the growth cycle and brought it to market earlier, and significantly increased the yield compared with PE mulch film and bare land, among which the black biodegradable mulch film had the most obvious effect. For millet crops, there was no significant difference in yield between the treatment with biodegradable mulch film and the treatment with PE mulch film, and the yield of the treatment with mulch film was significantly improved compared with the treatment with bare land. For vegetable crops such as tomato, eggplant and beet with short growth cycle, biodegradable mulch film can play the role of heat preservation and moisture increase for a long time, and promote the rapid growth of crops. The final yield is not significantly different from that of PE mulch film mulching treatment, even slightly improved, and significantly improved compared with bare land treatment. (3) Put forward the influence of different components of biodegradable mulch film on soil and crops, controllable degradation and cost problems, such as the difficult control of degradation speed, environmental problems caused by incomplete degradation of biodegradable mulch film, low technical maturity and high price, and put forward suggestions for future research and development, so as to modify and innovate biodegradable raw materials, reduce costs and regulate the degradation mechanism of biodegradable mulch film. Strengthen the research on raw materials, formula and production technology of biodegradable mulch film, and develop new biodegradable mulch film with high performance and multifunction, which can meet the regional applicability and crop applicability at the same time, and lay a theoretical foundation for the popularization and application of biodegradable mulch film to more regions and more crop varieties.

Key words: Biodegradable mulch film, Soil, Crops, Increasing temperature and preserving moisture, Yield