中国农业气象 ›› 2024, Vol. 45 ›› Issue (7): 701-714.doi: 10.3969/j.issn.1000-6362.2024.07.002

• 农业生态环境栏目 • 上一篇    下一篇

利用温度模型估算太阳辐射数据稀缺地区ET0

周俊伟,董勤各   

  1. 1.中国科学院教育部水土保持与生态环境研究中心/中国科学院水利部水土保持研究所,杨凌 712100;2.中国科学院大学, 北京 100049
  • 收稿日期:2023-08-15 出版日期:2024-07-20 发布日期:2024-07-16
  • 作者简介:周俊伟,E-mail:zhoujunwei22@mails.ucas.ac.cn
  • 基金资助:
    国家自然科学基金项目(51879224)

Using Temperature Models to Estimate ET0 in Data-scarce Regions with Limited Solar Radiation Data

ZHOU Jun-wei, DONG Qin-ge   

  1. 1. The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education/Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 2. University of Chinese Academy of Sciences, Beijing 100049
  • Received:2023-08-15 Online:2024-07-20 Published:2024-07-16

摘要:

准确估算参考作物蒸散量(ET0)对于区域水资源规划和灌溉调度具有重要意义,而太阳辐射Rs数据缺失是影响ET0估算的常见问题。本研究探讨基于温度模型估算Rs的可行性,寻求解决太阳辐射数据稀缺的方法,以提供更便捷且准确参考作物蒸散基于2001−2018年中国339个国家基本气象站数据,对比9种经验模型(M1−M9)和3种机器学习算法(RF、GRNN和ANN)估算逐日Rs,提出在太阳辐射数据稀缺或缺失地区估算逐日ET0的两种策略。结果表明:(1)基于温度模型估算逐日Rs可以得到满意的精度(R2>0.6),且机器学习算法优于经验模型。机器学习算法估算精度表现为人工神经网络(ANN>广义回归神经网络(GRNN)>随机森林(RF);经验模型估算精度表现为M9>M8>M6>M7>M5>M2>M3>M1>M412个模型在4个气候区估算精度表现为温带大陆区(TCZ)>温带季风区(TMZ)>亚热带季风区(SMZ)>山地高原区(MPZ)。(29种经验模型综合评估发现,Hargreaves-Samani模型M1)是最可靠的太阳辐射估算模型,其估算结果与其他模型接近,参数的变异系数(0.10)远低于其他经验模型结合克里格插值法计算全国范围内的校准,得到可靠的逐日太阳辐射值。(3)不同机器学习算法在不同气候区估算逐日ET0有差异,机器学习精度表现为ANN>GRNN>RF4个气候区精度表现为TCZ>TMZ>MPZ>SMZ。(4)有、无实际Rs校准的逐日ET0估算策略精度非常接近,两种策略都能提供准确的逐日ET0估算(R2>0.95),策略一较策略二平均R2仅提高0.39%。综合而言,本研究为解决太阳辐射数据稀缺提供了新的思路,并强调机器学习在ET0估算中的应用潜力可在太阳辐射数据稀缺地区有效进行参考作物蒸散估算

关键词: 参考作物蒸散发, 太阳辐射, 温度, 机器学习算法

Abstract:

Accurate estimation of reference crop evapotranspiration (ET0) is essential for water resources planning and irrigation scheduling. However, the absence of solar radiation (Rs) data is a common problem affecting the estimation of ET0. This study investigates the feasibility of employing temperature-based models to estimate Rs and proposes effective methodologies for obtaining more convenient and accurate ET0 estimates. To evaluate the effectiveness of different approaches, authors compared nine empirical models (M1−M9) and three machine learning algorithms (RF, GRNN and ANN) for daily Rs estimation. This analysis utilized data from 339 national basic meteorological stations in China, spanning the period from 2001 to 2018. Subsequently, authors proposed two strategies for estimating daily ET0 in regions where solar radiation data is limited or unavailable. The results showed that (1) temperature-based models exhibited satisfactory accuracy (R2> 0.6) for daily Rs estimation, with machine learning algorithms outperforming their empirical counterparts. The machine learning accuracies are ranked as follows: Artificial Neural Network (ANN) > Generalized Regression Neural Network (GRNN) > Random Forest (RF). And empirical models are ranked in descending order of accuracy: M9 > M8 > M6 > M7 > M5 > M2 > M3 > M1 > M4. The accuracies of twelve models in the four climatic zones are indicated as follows: the temperate continental zone (TCZ) > the temperate monsoon zone (TMZ) > the subtropical monsoon zone (SMZ) > the mountain plateau zone (MPZ). (2) The comprehensive assessment for nine empirical models indicates that the Hargreaves-Samani model (M1) is the most reliable for solar radiation estimation. Its estimated results are close to those of the other models, and the coefficient of variation of the parameters (0.10) is much lower than that of the other empirical models. Thus, combining the model with the nationally calibrated parameters computed by the Kriging interpolation method allows for reliable values of the daily solar radiation. (3) Machine learning techniques show variations in estimating daily ET0 across different climate zones. The machine learning accuracies are ranked as ANN>GRNN>RF, and TCZ>TMZ>MPZ>SMZ in the four climate zones. (4) The accuracies of the two daily ET0 estimation strategies, with or without actual Rs calibration, are very close. Both strategies provide accurate daily ET0 estimates (R2>0.95) with an average R2 improvement of only 0.39% for strategy I compared to strategy II. In conclusion, this study provides new ideas to address the scarcity of solar radiation data and highlight the potential of machine learning in ET0 estimation. This approach can be effectively applied to reference crop evapotranspiration estimates in regions where solar radiation data is scarce.

Key words: Reference crop evapotranspiration, Solar radiation, Temperature, Machine learning algorithms