中国农业气象 ›› 2025, Vol. 46 ›› Issue (2): 157-168.doi: 10.3969/j.issn.1000-6362.2025.02.003

• 农业气候资源与气候变化栏目 • 上一篇    下一篇

基于大数据5G通信链路的福州地区高分辨率降水模型

陈建云,杨家珠,林甲祥,吴启树   

  1. 1.福建省福州市气象局,福州 350008;2.中国移动通信集团福建有限公司,福州 350001;3.福建农林大学,福州 350002; 4.福建省气象台,福州 350008
  • 收稿日期:2023-12-03 出版日期:2025-02-20 发布日期:2025-02-20
  • 作者简介:陈建云,高级工程师,主要从事信息技术研究,E-mail:85659847@qq.com
  • 基金资助:
    福建省自然科学基金项目“基于大数据5G通信链路与降雨强度关系研究”(2021J01461)

High-resolution Precipitation Prediction Model Based on Big Data 5G Communication Link in Fuzhou

CHEN Jian-yun, YANG Jia-zhu, LIN Jia-xiang, WU Qi-shu   

  1. 1.Meteorological Bureau of Fuzhou, Fuzhou 350008, China; 2.China Mobile Communications Group Fujian Co., Ltd, Fuzhou 350001; 3.Fujian Agriculture and Forestry University, Fuzhou 350002; 4.Fujian Provincial Meteorological Observatory, Fuzhou 350008
  • Received:2023-12-03 Online:2025-02-20 Published:2025-02-20

摘要:

现有降水监测自动气象观测站、天气雷达、卫星等技术的建设投入与空间分辨率差异较大且有限,导致区域降水预测精度和时效性的差异。本研究以大数据5G通信链路和降水数据为基础,采用相关性与回归分析法,探讨移动终端信号衰减特征与降水相关关系;在核心伪代码算法基础上,构建线性回归、决策树回归和随机森林回归降水模型,并对模型性能进行评估,以期提高降水预测准确性。结果表明:大数据5G通信链路的通信数据与降水数据存在弱相关性;线性回归决策树回归随机森林回归降水模型的‌纳什效率系数NSE)分别−0.115444、−1.065824和0.310811;福州城区2022年5−6月大数据5G通信链路通信与降水监测联合数据,随机森林回归模型的平均准确性最优,验证精度为95.86%,表明大数据5G通信链路的通信数据,随机森林回归降水预测模型可对降水进行高分辨率、高准确性预测。本研究结果为高时空分辨率气象预测提供了一种科学的可选方案。

关键词: 5G通信链路, 降水, 相关性, 回归模型, 随机森林

Abstract:

The construction investment and spatial resolution of existing precipitation monitoring automatic meteorological observation stations, weather radars, satellites and other technologies vary greatly and are limited, resulting in differences in regional precipitation prediction accuracy and timeliness. In this study based on big data 5G communication links and precipitation data, correlation and regression analysis methods were used to explore the correlation between mobile terminal signal attenuation characteristics and precipitation. Based on the core pseudo code algorithm, linear regression, decision tree regression, and random forest regression precipitation prediction models were constructed and their performance was evaluated to improve the accuracy of precipitation prediction. The results indicated that there was a weak correlation between the communication data of the big data 5G communication link and the precipitation data. The linear regression precipitation prediction model had NSE of 0.115444, the decision tree regression precipitation prediction model had NSE of 1.065824 and the random forest regression precipitation prediction model had NSE of 0.310811. In addition, the joint data of communication and precipitation monitoring data from May to June 2022 of the big data 5G communication link in Fuzhou urban area achieved the best average prediction accuracy of 95.86% in the random forest regression precipitation prediction model. This suggests that the communication data from the big data 5G communication links can be used for highresolution and highprecision precipitation prediction in the random forest regression precipitation prediction models. The results of this study provide a scientific alternative to high spatiotemporal resolution meteorological forecasts.

Key words: 5G communication link, Precipitation, Correlation, Regression model, Random forest