中国农业气象 ›› 2020, Vol. 41 ›› Issue (10): 622-631.doi: 10.3969/j.issn.1000-6362.2020.10.002

• 农业生物气象栏目 • 上一篇    下一篇

钟模型在日光温室番茄发育进程模拟中的适应性探讨

温永菁,李春,董朝阳,程陈,刘淑梅,宫志宏,黎贞发,冯利平   

  1. 1.天津市静海区气象局,天津301600;2.天津市气候中心,天津 300074;3.中国农业大学资源与环境学院,北京 100193
  • 收稿日期:2020-03-19 出版日期:2020-10-20 发布日期:2020-10-15
  • 通讯作者: 李春,E-mail:spring_lee@hotmail.com

Research on the Simulation Model of Tomato Development Period in Solar Greenhouse Based on Clock Model Method

WEN Yong-jing,LI Chun,DONG Chao-yang,CHENG Chen,LIU Shu-mei,GONG Zhi-hong, LI Zheng-fa,FENG Li-ping   

  1. 1. Jinghai District Meteorological Office,Tianjin 301600,China; 2.Tianjin Climate Center, Tianjin 300074; 3. College of Resources and Environment, China Agricultural University, Beijing 100193
  • Received:2020-03-19 Online:2020-10-20 Published:2020-10-15

摘要: 依据日光温室番茄生长发育的光温反应特性,基于2个番茄品种不同播期12个生长季的发育阶段日数、温度和日照时数观测资料,利用钟模型中相关数学指数表达式表征番茄的不同发育时期和发育进度,将番茄的发育时期指标化。随后对各个发育阶段的模型参数进行求解,得到基本发育系数、温度反应特性遗传参数和光照反应特性遗传参数等模型参数初值,对模型进行统计检验和调试,使模型的模拟值与实测值之间误差最小,由此得到模型参数终值,建立基于钟模型方法的温室番茄发育期模拟模型。经验证,该模型在播种−三叶期、播种−初花期、播种−坐果期、播种−成熟期和播种−拉秧期5个番茄发育阶段模拟值与实际观测值之间的回归估计均方根误差(RMSE)分别为8.3、14.4、16.3、23.7和28.1d;回归估计标准均方根误差(NRMSE)分别为20.78%、20.18%、20.21%、17.35%和14.86%,表明本模型模拟效果较好。将钟模型模拟结果与有效积温法模拟结果进行对比,钟模型对各个关键发育期的模拟精度更高,模拟效果更好。

关键词: 温室, 番茄, 钟模型, 发育期模拟

Abstract: Tomato is one of the most important vegetables grown in China and around the world. In the facility production of tomato, not only the genetic characteristics of varieties and the management of water and fertilizer, but also the meteorological conditions such as temperature and light are important factors affecting the high yield and quality growth and development of tomato. In the actual production, the favorable meteorological conditions are often obtained by adjusting the temperature and light, so as to achieve the purpose of efficient production. Based on the clock model, this study attributed the influencing factors of each development stage to the air temperature and sunshine hours in the greenhouse, summarized the temperature of three basis points in each development stage of tomato, and constructed the development process simulation model of "Rijk Zwaan882" and "Provence" two common greenhouse tomato varieties in the north of China. The experiment was conducted in solar greenhouse (116.97°E, 39.43°N, altitude 8m) of Tianjin Agricultural Science and Technology Innovation Base from 2013 to 2015. According to the characteristics of light and temperature response of tomato growth and development in solar greenhouse, the different development stages and development phases of tomato were characterized by the mathematical index expression in clock model, and the development stage of tomato was indexed. Then, the model parameters of each development stage were solved, and the initial values of the model parameters, such as the basic development coefficient, the genetic parameters of temperature response characteristics and the genetic parameters of light response characteristics, were obtained, and the model was statistically tested and adjusted. The error between the simulated value and the measured value was minimized, and the final value of the model parameters was obtained. A simulation model of tomato development periods in greenhouse were established based on the clock model. The results showed that, firstly, the regression estimated root mean square error (RMSE) between the simulated values and the actual observed values in the five tomato development stages of the model were 8.3, 14.4, 16.3, 23.7 and 28.1 days, respectively. The standard root mean square error (NRMSE) of regression estimation were 20.78%, 20.18%, 20.21%, 17.35% and 14.86%, respectively, indicating that the simulation effect of this model was good. Secondly, the clock model simulation results was compared with the method of growing degree days (GDD) model simulation results. the RMSE of the tomato in each development stage of the clock model of the simulated values and the measured values was in 8.3−28.1 days, NRMSE was in 14.86%−20.78%, and the RMSE of the tomato in each development stage of GDD model of the simulated values and measured values was in 5.9−33.1 days, NRMSE was in 15.09%−34.38%. It was showed that the clock model could accurately predict development of greenhouse tomato development periods. In general, it was helpful to provide guidance for greenhouse tomato planting users to determine planting time, marketing time, management and control, so as to improve the economic benefits of tomato planting.

Key words: Greenhouse, Tomato, The clock model, Development periods simulation