中国农业气象 ›› 2022, Vol. 43 ›› Issue (06): 427-439.doi: 10.3969/j.issn.1000-6362.2022.06.001

• 农业气候资源与气候变化栏目 •    下一篇

温度对不同生态系统土壤甲烷氧化过程和甲烷氧化细菌的影响

郭家宏,范熠,张西美   

  1. 中国农业科学院农业环境与可持续发展研究所/农业农村部旱地农业农村重点实验室,北京 100081
  • 收稿日期:2021-09-28 出版日期:2022-06-21 发布日期:2022-06-21
  • 通讯作者: 张西美,研究员,研究方向土壤微生物多样性的维持和调控机制,土壤微生物的生物地理学以及土壤微生物的生态系统功能. E-mail:zhangximei@caas.cn
  • 作者简介:郭家宏,E-mail:gjhhh0118@163.com;范熠,E-mail:fanyi@caas.cn
  • 基金资助:
    国家自然科学基金(32071547);中国农业科学院科技创新工程

Effect of Temperature on Soil Methane Oxidation and Methanotrophs in Different Ecosystems

GUO Jia-hong, FAN Yi, ZHANG Xi-mei   

  1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2021-09-28 Online:2022-06-21 Published:2022-06-21

摘要: 温室气体的大量人为排放导致了近百年来的全球气候变化。甲烷是重要的温室气体,随着全球气温升高,甲烷排放量会随之增加,进一步加剧了全球温室效应。土壤是甲烷重要的源和汇,土壤中的甲烷氧化细菌在平衡甲烷的释放过程中发挥着关键作用。探究温度变化对土壤甲烷氧化能力的影响成为近年来的研究热点。本文综述了温度对土壤甲烷氧化过程以及甲烷氧化细菌的影响,分析了在不同温度下,各生态系统中的土壤甲烷氧化及甲烷氧化细菌响应特点和规律,比较了不同生态系统中土壤发生甲烷氧化的温度范围以及甲烷氧化菌株的生长温度范围。综述结果表明,不同生态系统能够发生甲烷氧化的温度范围不同;在能发生甲烷氧化的温度范围内,甲烷氧化速率随温度升高而增加;培养温度与土壤原位温度越相近时,甲烷氧化响应较为灵敏。与温度对甲烷氧化过程的影响类似,甲烷氧化细菌的丰度也随着温度升高而增加,并与增温幅度、优势甲烷氧化细菌的原位生长温度密切相关。土壤中的II型甲烷氧化细菌对温度较敏感,随着温度升高,II型甲烷氧化细菌丰度增加,因此,温度会通过影响甲烷氧化细菌的丰度和群落结构,从而影响甲烷氧化过程。但温度是否仅通过调控优势菌种更替来改变土壤甲烷氧化能力目前还尚未定论,未来需要进一步探究。本文讨论了土壤甲烷氧化过程对温度的响应及其微生物机制,可为全面解析全球变暖下的土壤甲烷氧化过程的变化提供参考。

关键词: 温度, 甲烷氧化过程, 土壤, 甲烷氧化细菌

Abstract: Excessive anthropogenic emissions of greenhouse gas have led to global climate change in recently years. Methane is an important greenhouse gas after carbon dioxide. Methane emissions increase with the global temperature, which further intensifies global warming. Soil is a huge source and sink of methane, and methanotrophic bacteria play a key role in reducing methane emissions. Exploring the effect of temperature on soil methane-oxidizing ability has been a research hotspot in recent years. This paper reviewed the effects of temperature on soil methane oxidation and methanotrophic bacteria; analyzes and compares the soil methane oxidation process and methanotrophic bacteria in various ecosystems at different temperatures, and the growth temperature range of methanotrophic bacteria strains. The results showed that various ecosystems have different temperature ranges for methane oxidation; the rate of methane oxidation increases with increasing temperature in their particular temperature ranges. When the cultivation temperature is closer to the in-situ temperature, the methane oxidation response will be faster. Similar to the effect of temperature on methane oxidation, the diversity and abundance of methanotrophic bacteria also increase with increasing temperature and are closely related to the magnitude of temperature increase and the adaptation temperature of dominant bacteria. Type II methanotrophic bacteria in the soil are more sensitive to temperature. As the temperature rises, the abundance of type II methanotrophs increases. Therefore, temperature affects the abundance and community structure of methanotrophs, thereby affecting the rate of methane oxidation and methane emissions. However, whether temperature can only change the methane oxidation capacity of the soil by regulating the replacement of dominant bacteria is still unconfirmed. This review discussed the response of methane oxidation to temperature and its microbial mechanism, in order to provides a comprehensive analysis for methane oxidation capacity under the context of future climate change.

Key words: Temperature, Methane oxidation, Soil, Methanotrophs