Chinese Journal of Agrometeorology ›› 2016, Vol. 37 ›› Issue (05): 505-512.doi: 10.3969/j.issn.1000-6362.2016.05.002

Previous Articles     Next Articles

Diurnal Variation Characteristic of Nitrous Oxide from Greenhouse Vegetable Soil during Emission Peak and its Optimal Observation Duration

XU Yu, LIU Zhao-hui , SHI Jing, WEI Jian-lin, LI Guo-sheng, WANG Mei, JIANG Li-hua   

  1. Institute of Resource and Environment, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture/Shandong Provincial Key Laboratory of Agricultural Non-Point Source Pollution Controland Prevention, Jinan 250100, China
  • Received:2016-03-25 Online:2016-10-20 Published:2016-10-12

Abstract:

The diurnal variation characteristics of N2O flux from a typical greenhouse vegetable soil during emission peak was investigated to obtain accurate N2O emission of greenhouse vegetable soil. After fertilizations, four typical days in four seasons were selected, which were 2012-08-28 (autumn), 2012-12-27 (winter), 2013-03-14 (spring) and 2013-06-14 (summer). The N2O fluxes were monitored by static chamber method and gas chromatographic technique continuously for 24 hours. The results showed that the significant diurnal variation and evident single-peak of N2O flux were found after fertilization (except for Dec. 27, 2012). The peak of N2O flux appeared at 14:00 pm and about 2 hours later than that of air temperature. The maximum and average value of N2O flux in 13th day after basal fertilization, compared with that on the second day after dressing, were 3.4 to 12.9 times and 6.8 to 7.0 times. There were highly significant (1%) or significant (5%) positive correlations between N2O flux(except for Dec. 27, 2012)and air temperature or soil temperature in 3cm and 10cm depth. It showed that the temperature might be the crucial factor in diurnal variation of N2O flux for the temperature is fate for N2O formation and the range of daily temperature difference is large enough. Based on the correct analysis, no correction is necessary for measurements carried out at 18:00-21:00, 10:00-6:00 (the next day), 21:00 and 16:00-18:00, which is recommended as the optimum time for Aug. 28, 2012; Dec. 27, 2012; Mar. 14, 2013 and Jun. 14, 2013, respectively. Correction coefficient is equal to the ratio of the daily average flux to the observing flux at different o’clock. It is recommended that the correction coefficient should be multiplied for the measured data based on other times; otherwise N2O emission might be overestimated by 13.4%-240% or underestimated by 13.1%-64.5%.

Key words: Greenhouse vegetable soil, Diurnal variation of N2O, In situ observation, Observation duration, Correction coefficient