Chinese Journal of Agrometeorology ›› 2023, Vol. 44 ›› Issue (01): 36-46.doi: 10.3969/j.issn.1000-6362.2023.01.004

Previous Articles     Next Articles

Assessment Regional Grain Yield Loss- Formulation of Agrometeorological Disaster-Yield Model of Inner Mongolia Autonomous Region

ZHU Yong-chang, LIU Bu-chun, LIU Yuan, SHIRAZI Zeeshan-Sana   

  1. 1.Institute of Environment and Sustainable Development in Agriculture, CAAS/National Engineering Laboratory of Efficient Crop Water Use and Disaster Reduction/Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081,China; 2.CMA Institute for Development and Programmer Design, Beijing 100081
  • Received:2022-01-15 Online:2023-01-20 Published:2023-01-16

Abstract: The aim of this paper is to assess the loss of grain production caused by agrometeorological disasters in the Inner Mongolia Autonomous Region (IMAR), which is an important grain production base of China. The disaster-yield assessment model was formed and verified using grain production, yield, planting area and agrometeorological disaster conditions data of the IMAR from 1981 to 2020, and the loss of grain yield caused by meteorological disasters was assessed by this model. The results showed that grain production, yield and planting area observed an escalating trend from 1981 to 2020, and the rate of increase was 78.85×104t·y−1, 100.97kg·ha−1·y−1 and 74.48×103ha−1·y−1. The covered and affected area of agrometeorological disasters for the IMAR and National both increased and then decreased during the 1981-2020 period. Drought was the most important agrometeorological disaster in the IMAR, and the covered and affected area was 64.10% and 62.45%, respectively, accounting the total covered and affected area of all kinds of disasters in 1981−2020. The grey correlation analysis showed that drought had the highest correlation with grain yield at the level of disaster covered and affected rate, and hail had the highest correlation with grain yield at the level of disaster destory rate. The disaster-yield assessment model constructed by this study was of high simulation accuracy, and the linear regression coefficients (R2) and the slop between the simulated and measured grain yield was 0.99 and 0.98, respectively (P < 0.01). The average relative simulation yield was 0.20% and relative simulation error of the following year grain yield was 2.49%. Grain yield loss rate due to disaster in the IMAR decreased (R2=0.77,P<0.01) from 1981 to 2020 with a rate of 0.48 percentage points·y−1, and average grain yield loss rate was 14.79% and there were 68.42% of years which grain yield loss rate above 10%. The disaster-yield assessment model of the IMAR formulated in this study can simulate and predict grain yield, and assess the loss of grain yield due to disasters, which can meet the needs of agrometeorological services.

Key words: Food security, Agrometeorological disasters, Condition of disaster, Disaster-yield loss model